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ABSTRACT

A reduced shallow water model under constant, non-zero advection in infinite do-

mains is considered. High-Order Givoli-Neta (G-N) and Hagstrom-Hariharan (H-H) non-

reflecting boundary conditions (NRBCs) are introduced to create a finite computational

space and solved using a spectral element formulation with high-order time integration.

Numerical examples are used to demonstrate the synergy of using high-order spatial, time

and boundary discretizations. Several alternatives are also presented for solving open do-

main problems. These alternatives include adjustments to the G-N NRBC based on phys-

ical arguments as well as formulating the boundary condition for arbitrary domains using

unstructured grids. The H-H polar NRBC is also formulated in an unstructured grid setting

and extended to include dispersive effects. Results show that by balancing all numerical

errors involved, high-order accuracy can be achieved for unbounded channel problems.

Further, the adjustments to the G-N and H-H NRBCs to operate in an unstructured grid

setting are shown to significantly reduce errors over first order non-reflecting boundary

schemes when operating in an open domain configuration.
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I. INTRODUCTION

Simulation of wave propagation through large – perhaps unbounded – domains has

been an active area of research for several decades. Such studies are important to many

applications such as acoustics, electromagnetics, meteorology, solid geophysics and aero-

dynamics to name just a few. The combination of the complexity of the partial differential

equation sets involved and the infinite possibilities of initial data mandates the numerical

solution to such problems. Of course, to undertake the numerical solution on an infinite

domain would be both foolhardy and impossible. Generally speaking, to overcome this

computational challenge, it is quite common to truncate the infinite domain by imposing

some type of boundary condition on a “sufficiently large” sub-domain that captures the area

of interest.

When truncating the domain, the modeler must devise boundary conditions for the

truncated domain. Of course, by imposing a boundary where one does not physically

exist, the problem is changed – and unless chosen carefully, would certainly be expected to

pollute the solution as the problem evolves and impinges on the boundary. Therefore, two

main possibilities exist for the modeler:

• Choose a convenient, easily implementable boundary condition that does not nec-

essarily reflect the physical problem and solve it on a large sub-domain. The idea

behind this technique is that the boundary effects are negligible for a short time evo-

lution of the problem in a small area of interest away from the boundaries.

• Choose a boundary condition that preserves the true behavior of the infinite solution

at the boundary and solve the problem on a smaller sub-domain. The idea behind this

technique is that the additional effort extended to impose a better boundary condition

will be worth the effort and allow for solving the problem on a smaller domain.

For obvious reasons, the first possibility has only limited usefulness. To see why, suppose

that we wanted to model the wave motion following a pebble dropped in the center of a

1



large, still pond. Now, suppose that we have a truncated domain to model this phenomena

– say a bathtub. If the pebble is dropped in the bathtub, the waves generated by the pebble

would propagate much like that in the pond – until, that is – the wave front reaches the hard

walls of the bathtub. At this point, the bathtub model ceases to be a useful representation

of the pond due to behavior caused by the non-physical boundary. If the modeler wishes to

see what happens a short time later – a larger bathtub would be required. This same prin-

ciple would apply for the numerical solution of this propagation problem – a poor choice

of boundary condition mandates the use of a larger computational domain. This in turn,

requires additional computational resources. For this reason, much effort has and continues

to be exerted on finding suitable boundary conditions that apply on smaller domains.

This dissertation examines the use of high-order non-reflecting boundary conditions

(NRBCs) to solve a class of infinite domain, wave propagation problems. In the last 35

years or so, much research has been done to develop NRBCs that, after discretization, lead

to a scheme that is stable, accurate, efficient and easy to implement. Of course, it is difficult

to find a single NRBC that is ideal in all respects and all cases; this is why the quest for

better NRBCs and their associated discretization schemes continues.

Sequences of increasing-order NRBCs have been available for a long time (e.g., the

Bayliss-Turkel conditions [1] constitute such a sequence), but they had been regarded as

impractical beyond 2nd or 3rd order from the implementation point of view. Only since the

mid 90s have practical high-order NRBCs been devised. The first high-order local NRBC

was proposed by Collino [2], for two-dimensional time-dependent waves in rectangular

domains. Its construction requires the solution of the one-dimensional wave equation on

the boundary. Grote and Keller [3] developed a high-order converging NRBC for the three-

dimensional time-dependent wave equation, based on spherical harmonic transformations.

Sofronov [4, 5] proposed exact boundary conditions for the three- and two- dimensional

wave equations in spherical and polar coordinates, respectively (it is proved that NRBCs

demonstrated in [3] and [4] are reduced to each other).

2



Hagstrom and Hariharan [6] constructed high-order NRBCs for the two- and three-

dimensional time-dependent wave equations based on the analytic series representation for

the outgoing solutions of these equations. For time-dependent waves in a two-dimensional

wave guide, Guddati and Tassoulas [7] devised a high-order NRBC by using rational ap-

proximations and recursive continued fractions. Givoli [8] has shown how to derive high-

order NRBCs for a general class of wave problems, leading to a symmetric FE formulation.

In [9], this methodology was applied to the particular case of time-harmonic waves, using

optimally localized Dirichlet-to-Neumann (DtN) NRBCs (see also [10]).

Previous studies of this nature have encountered limits in the accuracy of such solu-

tions. These accuracy limits can be caused by time and space discretization as well as from

the boundary scheme used in the solution of the problem. We seek to employ high-order

numerical methods in time and space to diminish the effects of discretization error in order

to determine the true efficacy of a given non-reflecting boundary condition.

The rest of the dissertation is outlined as follows. Chapter II motivates and derives

the equations for the problem under consideration. In Chapter III, we summarize the main

boundary schemes currently in use and specifically show the Givoli-Neta (G-N) NRBC

in detail. We then describe the high-order spectral element method used to discretize the

problem in space (up to 16th order polynomials) in Chapter IV. Chapter V discusses the

Runge-Kutta time discretization demonstrated up to 10th order. Chapter VI provides nu-

merical examples in various configurations and conditions to demonstrate concepts. Chap-

ter VII considers challenges associated with arbitrary boundary configurations and provides

results for a low-order boundary treatment using unstructured grids. Chapter VIII exam-

ines the potential for exploiting other non-reflecting boundary conditions employed in an

unstructured grid formulation and concludes with areas of future research.

3
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II. EQUATIONS OF FLUID MOTION

In order to scope the enormous problem of wave propagation and provide a good

test bed of examples for simulation of the non-reflecting boundary conditions under exami-

nation, we will derive the shallow water equations. The set of equations under consideration

have been used to predict Tsunamis and storm surges [11], as well as modeling atmospheric

flows. The term “shallow water” is a bit deceiving, as the medium does not necessarily have

to be water, nor does it have to be shallow. To elaborate – the equations under consideration

are generated by very general physical principles, namely conservation of mass and mo-

mentum, that are then simplified using reasonable assumptions. In this derivation, we will

abbreviate the approach taken by Cushman-Roisin [12], Pedlosky [13] and Batchelor [14]

and further simplify the equations by reducing them to a scalar Klein-Gordon equation

equivalent.

A. CONSERVATION OF MASS

One of the fundamental physical principles is that mass can neither be created nor

destroyed. Consider a control volume – a fixed region in space where fluid is allowed

to occupy and pass through. Within this control volume, mass is conserved. In other

words, for the mass to change in a control volume, there must be mass passing through the

boundary of the control volume. Suppose dm is an infinitesimal portion of the mass, dV

and dA are infinitesimal portions of the control volume and its boundary, respectively, and

ρ is the density of the fluid occupying the control volume. Then by this argument, the mass

enclosed by the surface at any instant is
∫
dm =

∫
ρ dV . Further, the net rate that mass

is flowing outwards across the boundary is
∫

(ρu) · n dA. Putting these two ideas together
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we find that for mass to be conserved:

∂

∂t

∫
ρ dV︸ ︷︷ ︸

Time rate of mass
change in CV

= −
∫

(ρu) · n dA.︸ ︷︷ ︸
Net rate of mass flux

across boundary

Here: u = (u, v, w)T is the fluid velocity and n is the outward pointing unit normal on the

boundary.

Further, upon differentiation under the integral sign (remembering that the control

volume is fixed in space) and transforming the surface integral using the divergence theo-

rem:

∫
∂ρ

∂t
dV +

∫
∇ · (ρu) dV = 0∫ (

∂ρ

∂t
+∇ · ρu

)
dV = 0

This relation is valid for all choices of the control volume, therefore, the integrand

must also be identically zero. i.e.,

∂ρ

∂t
+∇ · ρu = 0 (II.1)

The differential equation (II.1) is commonly referred to as the continuity equation in fluid

mechanics.

B. IMPORTANCE OF THE EARTH’S ROTATION

Modeling phenomena on a large scale, such as the currents of the ocean or winds in

the atmosphere, may require special handling since the earth is not static. In fact, the earth

rotates on its axis approximately once every 24 hours. This results in a mean rotation rate

Ω of:

Ω =
2π

rotation period
.
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Figure 1: Fixed (X, Y ) and rotating (x, y) frameworks of reference.

When the “exact”1 rotation period of the earth is considered, this results in a mean angular

velocity of 7.292 × 10−5 radians
sec [15]. The trajectory of a fluid in motion is expected to be

influenced by this rotation if the fluid traveling at the speed U covers a distance L in a time

interval greater than the rotation period. This concept is captured by a non-dimensional

parameter ε and is defined as:

ε =
2π/Ω

L/U
=

2πU

ΩL

If ε is on the order of or less than unity (ε . 1), then we would expect that rotation

is important. This number (neglecting the constant multiple 2π) is known as the Rossby

number [12].

1. Equations in a Rotating Frame

Now, we examine this rotating frame of reference on the earth. From the human

perspective on the surface of the earth, we appear to be on a 2-dimensional surface. Suppose

that we have X− and Y− axes that are the fixed or inertial reference frame and x− and

y− axes that form the same reference frame, but rotating at the angular rate of Ω. The unit

vectors that follow this convention are defined by (I,J) and (i,j) as shown in Figure 12. It

1The mean day is 23 hours, 56 minutes and 4.091 seconds, but variations caused by friction from the
earth’s tides, as well as significant geophysical events on earth have been observed to cause fluctuations in
this measure.

2Adapted from [12], Figure 2-1, p. 17.
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follows that

i = I cos Ωt+ J sin Ωt j = −I sin Ωt+ J cos Ωt

and the coordinates of the position vector r = XI + Y J = xi + yj are correspondingly

x = X cos Ωt+ Y sin Ωt

y = −X sin Ωt+ Y cos Ωt

Differentiating once with respect to time gives the rate of change of the coordinates relative

to the moving frame, u = dx
dt

= ui + vj (relative velocity). Differentiating again with

respect to time gives the rate of change of the relative velocity in the moving frame, a =

du
dt

= d2x
dt2

= ai + bj (relative acceleration). When completed and simplified, the absolute

acceleration in the inertial frame with respect to the relative acceleration is:

A =
(
a− 2Ωv − Ω2x

)
i +
(
b+ 2Ωu− Ω2y

)
j (II.2)

= Ai +Bj

These results could also be derived in a vector form as outlined in [13] by defining

the vector rotation in a direction common to both the rotating and inertial frames of refer-

ence – Ω = Ωk, where k is a unit vector orthogonal to the plane. In this case, we can write

(II.2) as:

A = a + 2Ω× u + Ω× (Ω× x) (II.3)

where u is extended to u = ui+vj+wk. It should be noted that there are three contributions

to the acceleration in the rotating frame: relative acceleration (a), one proportional to Ω and

the velocity, and one proportional to Ω2 and the position. The contribution proportional to

Ω and the velocity is known as the Coriolis acceleration and the other, proportional to Ω2

and the position is the centripetal acceleration.

8



For practical purposes, the centripetal acceleration terms are often neglected since

Ω2 ∼ O (10−9). Additionally, even though centripetal acceleration causes objects on the

surface of the planet to feel an outward pull, these objects do not fly off into space. In

fact, even objects at rest, (u, v) = 0 thus removing the Coriolis effect, for all intents and

purposes, remain at rest as the gravitational pull of the earth keeps centripetal acceleration

in check.

When we neglect the centripetal acceleration terms in (II.3), the absolute accelera-

tion terms in the inertial frame simplify to

A = a + 2Ω× u

= (a− 2Ωv) i + (b+ 2Ωu) j + ck (II.4)

2. 3-Dimensional Rotating Earth Model

Now, we consolidate our results to apply to a 3-dimensional rotating earth model.

Consider Figure 23 where Ω is oriented along the axis of rotation and an object is located

on the surface at a latitude φ. A local coordinate system is set up with the axis orientation

(x, y, z) → (east,north,radial) with standard convention of unit normal vectors. In this

frame of reference, the earth’s rotation vector is expressed as

Ω = Ω cosφj + Ω sinφk. (II.5)

Using this to expand (II.4), we find that the acceleration in the inertial reference in

terms of the rotating components has the following components:

i : a+ 2Ωw cosφ− 2Ωv sinφ

j : b+ 2Ωu sinφ (II.6)

k : c− 2Ωu cosφ.

3Adapted from [12], Figure 2-8, p. 27.
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Figure 2: Local Cartesian framework on spherical earth.

Here, we notice the terms dependent on the latitude have common components, namely:

f = 2Ω sinφ (II.7)

f∗ = 2Ω cosφ

The coefficient f is called the Coriolis parameter and the latter is the reciprocal Coriolis

parameter. If we examine the scales of the components described in (II.6), we note that

if we are describing geophysical fluid motion, the depth is much smaller than that of the

surface it covers, and as such, the flows in this context tend to be parallel to the surface

minimizing the effects of vertical flows. For our model, this implies that the effects of w

are negligible compared to the effects of u and v. Additionally, any acceleration induced by

the rotation in the vertical direction will be negligible compared to those along the surface.
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This simplifies our acceleration in the inertial reference to:

i : a− 2Ωv sinφ

j : b+ 2Ωu sinφ

k : c.

In vector form, this can be written as:

A = a + f (k× u) (II.8)

Cushman-Rosin [12] provides two anecdotal justifications for this simplification. While

the atmospheric layer that determines our weather is only about 10 km thick, cyclones and

anticyclones spread over thousands of kilometers. The second in the context of oceanic

currents notes that flows are generally confined to the upper hundred meters but spread

over tens of kilometers.

C. CONSERVATION OF MOMENTUM

The linear momentum of an object of mass m moving with velocity u is defined

to be the product of the mass and velocity: P = mu, and in a closed system, must be

conserved. Linear momentum is related to the forces acting using Newton’s second law of

motion – namely, that the time rate of change of the momentum of an object is equal to the

resultant forces on the object. That is,

F =
∂

∂t
P (II.9)

This implies that if resultant forces are zero, the momentum of the particle must be constant.

For this to happen, all of the forces (body and surface) acting on an object must sum to zero.

In terms of the control volume framework discussed previously, this further implies that if
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momentum is entering or leaving the control volume:

∂

∂t
P =

∂

∂t
mu∗ =

∂

∂t

∫
ρu∗dV =

∫
ρbdV︸ ︷︷ ︸

Body forces
acting on Ω

−
∫

(ρu) u · ndA︸ ︷︷ ︸
Net momentum flux

across bdry of Ω

+

∫
TndA.︸ ︷︷ ︸

Forces acting
on bdry of Ω

(II.10)

Here, u∗ is the velocity in the inertial frame. Body forces are those acting on the fluid

volume that are proportional to the mass. The body forces considered here are gravity and

(indirectly) the Coriolis force described in II.B. Others could include electromagnetic and

centrifugal forces pertinent in alternate applications.

1. Gravity Effects

Gravity acts on a control volume strictly towards the center of the earth, and in the

local coordinate system is along −k. This implies:

ρbg = −ρgk (II.11)

Here, g is the gravitational constant which varies based on the distance from the center of

the earth. At sea level, this value is approximately 9.798m
s2

, and in this context can be taken

to be constant.

2. Coriolis Effects

Coriolis acts in a way to “adjust” the control volume’s acceleration when going

from a rotating to an inertial frame. This term enters via the expression on the left hand

side in the time change of momentum. Explicitly, this is

∂

∂t

∫
ρu∗dV =

∫ (
∂ρ

∂t
u∗ + ρ

∂u∗
∂t

)
dV =

∫ (
∂ρ

∂t
u∗ + ρA

)
dV

=

∫ [
∂ρ

∂t
u∗ + ρa + ρf (k× u)

]
dV

=
∂

∂t

∫
ρudV +

∫
ρf (k× u) dV
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provided that ρ is constant in time.

3. Surface Force Effects

Surface forces are those exerted across the boundary by the surrounding matter.

Typical surface forces include pressure and viscosity. Since we are examining the equations

in the context of atmospheric and oceanic applications, the effects of viscosity are small

in comparison to other forces, and as such, will not be considered here. VanJoolen [16]

derives these terms in detail for the interested reader, but further concludes the contribution

of viscosity can be neglected in this application. The total boundary force exerted by the

surrounding matter at the surface of a control volume is

∫
TndA = −

∫
pndA

where p is the pressure exerted on the control volume by the surroundings. This surface in-

tegral may be transformed to an integral over the volume by the analogue of the divergence

theorem for a scalar quantity [14, p. 15] giving

−
∫
pndA = −

∫
∇pdV.

Alternate derivations of this quantity can be found in [16] and [17], and provide further

insights as from where this quantity is derived.

4. Momentum Equations in a Rotating Frame

We now apply the divergence theorem to transform the surface integral in (II.10)

and collect results.

∂

∂t

∫
ρudV +

∫
∇ · (ρuu) dV −

∫
ρgkdV +

∫
ρf (k× u) dV +

∫
∇pdV = 0
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Here, uu is a tensor product of the velocity vector. Again, differentiating under the integral

sign and consolidating terms yields:

∫ [
∂

∂t
(ρu) +∇ · (ρuu)− ρgk + ρf (k× u) +∇p

]
dV = 0.

Since this relation is valid for all choices of the control volume, the integrand must identi-

cally be zero, i.e.,

∂

∂t
(ρu) +∇ · (ρuu) +∇p = ρgk + ρf (u× k) . (II.12)

Together with the continuity equation (II.1) we have our equations of fluid motion in a

rotating frame.

D. FURTHER SIMPLIFICATIONS OF THE SYSTEM

Our equations of fluid motion have taken several physical principles into account,

but we wish to simplify them more in order to get a tractable model that can serve as a

launching point for more testing. In the case of this analysis, we wish to make the following

assumptions about the physical problem in order to arrive at the shallow water equations:

The fluid is homogeneous: We assume that the fluid density is constant and uniform through-

out the domain.

The fluid is inviscid: This implies that the only surface force acting on the fluid is pressure

(neglects shear forces which would act to retard the motion of the fluid.)

The fluid is incompressible: Together with the assumption of homogeneity this decou-

ples the dynamics from any thermodynamic considerations that might be used in

another setting.

Centrifugal forces are balanced by gravity: This allows simplification of acceleration terms

in the rotating frame of reference.
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Figure 3: The shallow water model with irregular bottom topography.

The fluid is shallow: The depth terms in the applications considered are much smaller

than the surface it covers, and therefore implies that flows are primarily along the

surface.

We consider a sheet of fluid as shown in Figure 3 with properties as outlined above.

Here, we define the irregular bottom height below a sensible a reference value z = 0 as

hB(x, y). This reference level could be considered the fluid height at rest. The height of

the surface of the fluid above the same reference level is defined as h(x, y, t). The depth

of the fluid is therefore H(x, y, t) = h(x, y, t) + hB(x, y). To reiterate the shallow water

assumption, we have a value for the height of the fluid H(x, y, t) that is much smaller than

the length and width of the fluid. Again, we consider a fluid that is in the presence of

rotation Ω about the z−axis.

1. Mathematical Simplifications

As outlined in [17, Appendix A], the momentum equations (II.12) can be mathe-

matically simplified using nothing but product rule expansions and the continuity equation
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to yield:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+

1

ρ

∂p

∂x
= fv

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+

1

ρ

∂p

∂y
= −fu (II.13)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
+

1

ρ

∂p

∂z
= −g.

2. Implication of Homogeneity

Since the fluid is assumed to be homogeneous in nature (ρ is constant), the conti-

nuity equation (II.1) reduces to

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= ∇ · u = 0. (II.14)

3. Implication of Shallow Fluid

This assumption allows significant simplification of our fluid motion model. Here,

we assume that the surface scale of the problem at hand is much larger than that of any

depth considerations. Pedlosky [13] outlines a scaling argument that shows how the rel-

ative importance of terms in the z−momentum equation allow all of the terms except for

the pressure derivative and the gravity to be neglected. This collapses the z−momentum

equation to

∂p

∂z
= −ρg.

We can then immediately depth integrate to yield

p = −ρgz + A(x, y, t).
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If the surface is under some constant ambient pressure p(x, y, h) = p0, this implies that

A(x, y, t) = p0 + ρgh(x, y, t) thereby, giving us an expression for p

p(x, y, h) = ρg (h(x, y, t)− z) + p0.

We compute the pressure gradients in the x− and y− directions

∂p

∂x
= ρg

∂h(x, y, t)

∂x

∂p

∂y
= ρg

∂h(x, y, t)

∂y
. (II.15)

Here, we note [13] that the pressure gradients are independent of z so that the horizontal

accelerations must also be independent of z. For consistency, we therefore assume that the

horizontal velocities will also be independent of z.

a. Primarily Horizontal Flow

We have already observed that since the flow in shallow waters is primarily

along the surface, the z− momentum collapsed down significantly. We can use this argu-

ment to similarly simplify the x− and y− momentum equations. In this case, since w is

significantly smaller than u or v, the terms w ∂u
∂z

and w ∂v
∂z

can also safely be neglected. Sub-

stituting these simplifications along with our pressure gradients (II.15) into (II.13) results

in the x− and y− momentum equations:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −g∂h(x, y, t)

∂x

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
− fu = −g∂h(x, y, t)

∂y
.

(II.16)
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b. Continuity Equation Simplifications

We now depth integrate our continuity equation (II.14) from z = −hb(x, y)

to z = h(x, y, t). After dropping variable dependencies for clarity, this yields:

0 =

∫ h

−hB
∇ · udz

=

∫ h

−hB

(
∂u

∂x
+
∂v

∂y

)
dz + w|z=h − w|z=−hB . (II.17)

Considering reasonable boundary conditions for the last term as detailed in [12], we specify

no normal flow on the rigid bottom (−hB) and a corresponding kinematic condition at the

fluid surface (h). These conditions are:

w(x, y,−hB) = −u∂hB
∂x
− v∂hB

∂y

w(x, y, h, t) =
∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
.

(II.18)

Combining (II.17) and (II.18) yields (after simplification outlined in Appendix A)

∂h

∂t
+

∂

∂x
(Hu) +

∂

∂y
(Hu) = 0. (II.19)

E. LINEARIZING THE SHALLOW WATER MODEL

The shallow water model in its current form is non-linear. We have three state vari-

ables, u, v, and h. Each of these are defined such that u = u(x, y, t) and v = v(x, y, t) are

the unknown fluid velocities in the x and y directions, h(x, y, t) is the unknown fluid eleva-

tion above the reference level, f is the Coriolis parameter, and g is the gravity acceleration.

We now introduce the following shorthand for partial derivatives

∂a =
∂

∂a
, ∂ab =

∂2

∂a∂b
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We wish to find a linear version of these equations. Right now, we have

∂tu+ u∂xu+ v∂yu− fv = −g ∂xh

∂tv + u∂xv + v∂yv + fu = −g ∂yh (II.20)

∂th+ ∂x (Hu) + ∂y (Hv) = 0.

Now, suppose that the bottom topography is flat such that hB is constant and u and v can

be described by a constant mean term and a small O(δ) deviation from that value, i.e.,

u = U + u∗ v = V + v∗ H = hB + h

To be clear, U and V are the mean velocities and hB is the mean water elevation. Using

these substitutions and neglecting any O(δ2) terms results in the linearized form of the

shallow water equations (see Appendix B for details):

∂tu
∗ + U∂xu

∗ + V ∂yu
∗ − f(V + v∗) = −g ∂xh

∂tv
∗ + U∂xv

∗ + V ∂yv
∗ + f(U + u∗) = −g ∂yh (II.21)

∂th+ U∂xh+ V ∂yh+ hB (∂xu
∗ + ∂yv

∗) = 0.

F. KLEIN-GORDON EQUIVALENT TO THE SHALLOW WATER MODEL

Using the linearized form of the shallow water equations, we can find a Klein-

Gordon equation equivalent through a series of linear operations as outlined by Pedlosky [13].

We begin by defining the operator (linearized Lagrangian derivative)

D

Dt
= ∂t + U∂x + V ∂y. (II.22)
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Substituting (II.22) into (II.21) we have the modified form

Du∗

Dt
− f(V + v∗) = −g ∂xh (II.23)

Dv∗

Dt
+ f(U + u∗) = −g ∂yh (II.24)

Dh

Dt
+ hB (∂xu

∗ + ∂yv
∗) = 0. (II.25)

Taking f as constant (along some latitude) and summing the partial derivative of (II.23)

with respect to x and the partial derivative of (II.24) with respect to y, we have

∂x

(
Du∗

Dt

)
− f∂xv∗ = −g∂xxh

+ ∂y

(
Dv∗

Dt

)
+ f∂yu

∗ = −g∂yyh

D

Dt
(∂xu

∗ + ∂yv
∗) + f (∂yu

∗ − ∂xv∗) = −g∇2h (II.26)

Similarly, we find the difference of the partial derivative of (II.23) with respect to y and the

partial derivative of (II.24) with respect to x to find

∂y

(
Du∗

Dt

)
− f∂yv∗ = −g∂xyh

− ∂x

(
Dv∗

Dt

)
+ f∂xu

∗ = −g∂xyh

D

Dt
(∂yu

∗ − ∂xv∗)− f (∂xu
∗ + ∂yv

∗) = 0 (II.27)

We apply the operator D
Dt

to (II.26) and add −f times (II.27)

D2

Dt2
(∂xu

∗ + ∂yv
∗) + f

D

Dt
(∂yu

∗ − ∂xv∗) = −g D
Dt

(
∇2h

)
+ f 2 (∂xu

∗ + ∂yv
∗)− f D

Dt
(∂yu

∗ − ∂xv∗) = 0

D2

Dt2
(∂xu

∗ + ∂yv
∗) + f 2 (∂xu

∗ + ∂yv
∗) = −g D

Dt

(
∇2h

)
. (II.28)
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From (II.25), we know that − 1
hB

Dh
Dt

= ∂xu
∗ + ∂yv

∗, which can be used in (II.28)

D2

Dt2

(
−Dh
Dt

)
+ f 2

(
−Dh
Dt

)
= −ghB

D

Dt

(
∇2h

)
which, after factoring D

Dt
, becomes

D

Dt

(
D2h

Dt2
+ f 2h− ghB∇2h

)
= 0.

We can rewrite this equation as

D2h

Dt2
+ f 2h− c2

0∇2h = S(x, y, t)

where c2
0 = ghB and D

Dt

(
S(x, y, t)

)
= ∂tS + U∂xS + V ∂yS = 0. This source term we

will assume to be zero, giving us the homogeneous form

D2h

Dt2
+ f 2h− c2

0∇2h = 0.

If we expand the operator D
Dt

twice, we get an expanded Klein-Gordon form

(∂t + U∂x + V ∂y)
2 h− c2

0∇2h+ f 2h = 0 (II.29)

of the shallow water equations under constant advection U and V and dispersion evidenced

by the f 2 term. This equation specifies the perturbation of the wave height h above a

reference level hB.

G. RECOVERING THE FLUID VELOCITIES

Suppose now that we have the solution for h(x, y, t). In order to recover the fluid

velocities u(x, y, t) and v(x, y, t), we consider the modified form of our shallow water

model shown in (II.23)-(II.25). We first apply the operator D
Dt

to (II.23) and multiply (II.24)
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by f to yield:

D2u∗

Dt
− f Dv

∗

Dt
− f DV

Dt
= −g D

Dt

(
∂h

∂x

)
(II.30)

f
Dv∗

Dt
+ f 2(U + u∗) = −gf ∂h

∂y
(II.31)

Adding (II.30) and (II.31) yields:

(
D2

Dt
+ f 2

)
u∗ + f 2U = −g

(
D

Dt

(
∂h

∂x

)
+ f

∂h

∂y

)
. (II.32)

The solution of this partial differential equation (no more difficult to solve than the equation

for the perturbation of the wave height h) gives us the fluid velocity in the x direction.

A similar manipulation (subtracting f times (II.23) from D
Dt

operating on (II.24))

yields: (
D2

Dt
+ f 2

)
v∗ + f 2V = −g

(
D

Dt

(
∂h

∂y

)
− f ∂h

∂x

)
. (II.33)

The solution of this partial differential equation gives us the fluid velocity in the y direction.
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III. HIGH ORDER NON-REFLECTING BOUNDARIES

The numerical solution of a wave propagation problem in a very large or unbounded

domain provides a challenging computational difficulty – namely, solving the problem on

a finite computational domain while maintaining the true essence of the solution. One of

the modern techniques that has garnered a significant amount of attention in handling this

challenge is the absorbing or non-reflecting boundary condition (NRBC) method. In using

this method, the original infinite domain is truncated by an artificial boundary B, resulting

in a finite computational domain Ω and the residual domain D. Figure 4 illustrates the

NRBC set-up using an infinite wave guide. Here, the artificial boundary B extends from

the southern (ΓS) to the northern (ΓN ) boundaries of the wave-guide, thus creating the east

(ΓE) and west (ΓW ) boundaries of Ω at x = xE, xW respectively. Appropriate boundary

conditions are prescribed on the northern (ΓN ) and southern (ΓS) boundaries. Outside of

the area enclosed by these boundaries is the residual infinite domain D.

y

x

W

S

E

DD

Ex x=Wx x=

BB

Figure 4: An infinite wave-guide truncated by artificial boundaries ΓW and ΓE

One would expect that the introduction of any boundary B, where one does not

physically exist, to pollute the solution through the reflection induced by such an artificial

boundary. In the last two decades, significant efforts have been extended to find stable,
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efficient, accurate and practical means of reducing this reflection through so-called NRBCs

[18].

Several high-order NRBCs have been devised to reduce spurious reflections that

would pollute the solution. Beginning in the late 1980s, the well-known Engquist-Majda

[19] and Bayliss-Turkel conditions [1] gave way to Collino’s [2] low derivative, auxiliary

variable formulation for the 2D scalar wave equation. This sparked a flurry of activity in an

effort to find quality, high-order NRBCs that were easily implementable. The sheer volume

of literature on the topic of boundary conditions for infinite problems suggests that there

is no “perfect” boundary condition available for general purpose use. In reality, a modeler

must make decisions on how to balance accuracy, efficiency and ease of implementation to

yield reasonable solutions. Extensive reviews on the topic can be found in [18, 20, 21, 17]

A. HIGDON SCHEME

The starting point for the family of NRBCs discussed in this dissertation is the

condition devised by Higdon in a series of papers [22, 23, 24, 25, 26, 27], that was demon-

strated in a low-order finite difference setting. While in theory, Higdon’s NRBC is con-

sidered a high-order NRBC, the formulation requires evaluation of increasing high-order

spatial and temporal derivatives as the order of the NRBC is increased. Higdon’s condi-

tion (and most NRBCs for that matter) seeks to annihilate waves impinging normal to a

boundary. To see the idea behind this condition, consider a one-dimensional wave equation

∂tth− c2
0 ∂xxh = 0

whose solution was obtained by d’Alembert in 1747 [28], as

h(x, t) = F (x− c0t) +G(x+ c0t).

This solution implies that there are two components to the solution – one wave G of fixed

shape moving to the left at velocity −c0 and one wave F of fixed shape moving to the
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right at velocity c0. Now, suppose that the right moving wave approaches a boundary. To

perfectly absorb the wave impinging on the boundary, the boundary must satisfy G = 0

such that the boundary condition is h(x, t) = F (x − c0t). Differentiating the boundary

condition with respect to x and t results in:

∂xh = F ′(x− c0t), ∂th = −c0F
′(x− c0t), (III.1)

which implies

∂th+ c0∂xh = 0. (III.2)

This is the Sommerfeld radiation condition for the eastern boundary. If we expand the

discussion to two-dimensional problems, this condition implicitly assumes that by the time

the wave front reaches the boundary, it is traveling primarily as a plane wave at speed c0.

1. Accounting for Dispersion

In a non-dispersive medium, waves can propagate without deformation. The chal-

lenge associated with dispersive waves such as the Klein-Gordon equivalent under consid-

eration here, is that the wave speed depends on the frequency of the wave. Thus, if using the

Sommerfeld radiation condition (III.2), only the waves traveling at phase speed c0 will be

absorbed – for all others, only a portion of the wave will be absorbed. Higdon considered

a composition of J of these simple first order operators to yield his boundary condition:

HJ :

[
J∏
j=1

(
∂n +

1

Cj
∂t

)]
h = 0 on Γ (III.3)

where ∂n is the normal derivative on the boundary. In the case of the wave guide shown in

Figure 4, this derivative is ∂x and−∂x corresponding to the eastern and western boundaries

respectively. The boundary condition contains parameters Cj that can be interpreted in

terms of the phase velocities of waves absorbed exactly at the boundary. Except in contrived

examples, there are infinitely many waves composing the solution, and in a dispersive
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medium, a corresponding infinitely many phase velocities. A choice of the order J of the

boundary condition seeks to annihilate the “most significant” J waves.

2. Reflection Caused by the Boundary

For purposes of illustration, consider a simplified version of (II.29) where U, V are

both zero

∂tth− c2
0∇2h+ f 2h = 0. (III.4)

Further, suppose that the domain is structured such that the NRBC is imposed on only on

the eastern boundary of a rectangular grid as shown in Figure 5. On the south and north

y

x

W

N

S

b E

D

B

Ex x=

Figure 5: A semi-infinite channel truncated by artificial boundary ΓE

boundaries (ΓS and ΓN ), we have no normal flow, i.e.,:

∂yh = 0 on ΓN and ΓS (III.5)

and we impose h = f(y, t) on ΓW . As x → ∞ the solution is known to be bounded and

not to include any incoming waves. A solution to (III.4) has the form

h(x, y, t) = Y (y) cos (kx− ωt+ φ) (III.6)

such that Y (y) satisfies (III.4). One such example Y (y) = cos nπy
b

for n = 0, 1, 2, . . . that

satisfies these boundary conditions is given by Givoli and Neta [29]. Given this choice for
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Y (y), the dispersion relation is

ω2 = c2
0

(
k2 +

n2π2

b2

)
+ f 2, n = 0, 1, 2, . . . . (III.7)

In this solution, k is the horizontal wavenumber, n is a parameter for controlling the shape

of Y (y), ω is the wave frequency and φ is the phase shift. The horizontal phase velocity [28]

is therefore Ck = ω
k

for a particular wave number. Suppose that one of the Cj’s in (III.3)

equals Ck.

∂th = ωY (y) sin (kx− ωt+ φ)

∂xh = −kY (y) sin (kx− ωt+ φ)

so that 0 = ∂th+
ω

k
∂xh

thus, satisfying the Higdon boundary condition (III.3) exactly for that particular mode.

If, however, none of the Cj’s were identically Ck, then a portion of the mode would be

reflected and the boundary condition would not be exactly satisfied. To make the boundary

condition true, it would have to be adjusted to incorporate the reflected modes. Higdon [27]

sketches and Dea [17] details via a simple induction argument that proves the reflection

coefficient RJ is

RJ =
J∏
j=1

∣∣∣∣Cj − CkCj + Ck

∣∣∣∣ . (III.8)

We notice here that RJ is a product of factors that are each less than one. Therefore,

simply increasing the order of the NRBC (J) reduces the amplitude of the reflected wave

irrespective of the choice of Cj . van Joolen et al. [30, page 1045] notes, “Of course, a

good choice for the Cj would lead to better accuracy with a lower order J , but even if the

‘wrong’ Cj’s are taken . . . one is still guaranteed to reduce the spurious reflection as the

order J increases.” We can use the dispersion relation together with the definition of the
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horizontal phase velocity Ck to find that

Ck =

√
c2

0

(
k2 + n2π2

b2

)
+ f 2

k

=

√
c2

0 +
c2

0
n2π2

b2
+ f 2

k2
,

which shows that Ck ≥ c0 and therefore guides our selection of Cj to always be at least c0.

Based on the preceding discussion, we outline some of the inviting characteristics

of the Higdon NRBC.

• The boundary condition is tractable, extending basic principles to arrive at the final

condition.

• They are exact for all waves that propagate with speed Cj .

• Reflection is guaranteed to decrease by simply increasing the order of the NRBC.

• They have been applied to a wide variety of wave-type problems including those in

dispersive media [17, 22, 23, 24, 25, 26, 27, 29, 31, 32].

The boundary condition, however, suffers from an implementation point of view. Due to

the increasing order in the spatial and temporal derivatives required, even Higdon in his

original papers considered practical implementation to be no more than J = 3.

B. HIGDON ADJUSTMENTS FOR ADVECTION

In the discussion of Higdon’s boundary condition above, we considered the zero

advection case. Eventually we wish to implement the Klein-Gordon equivalent which in-

cludes constant advection. Here, we discuss modifications to Higdon’s scheme to accom-

modate non-zero, constant advection. This discussion will use physical arguments that will

be reinforced by numerical considerations later in this dissertation. To begin, we consider a

wave augmented by advection impinging on the NRBC of the semi-infinite channel shown
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in Figure 5. Implicit in this derivation is that by the time the wave pulse arrives at the

NRBC, it is traveling primarily as a plane wave (in the x−direction). The wave moves

according to the equation under consideration,

(∂t + U∂x + V ∂y)
2 h− c2

0∇2h+ f 2h = 0.

If, however, this wave is moving primarily in the x−direction, then any effects of y are

negligible. Further, as in the derivation of the Sommerfeld radiation condition (III.2), we

first consider a non-dispersive environment such that f 2 = 0 in this derivation to suggest

an appropriate boundary condition. This simplifies our discussion to a wave that moves

according to

(∂t + U∂x)
2 h− c2

0∂xxh = 0. (III.9)

As outlined in Appendix C, the solution takes the form

h(x, t) = F
(
x− (c0 + U)t

)
+G

(
x+ (c0 − U)t

)
(III.10)

with the interpretation that the general solution is the sum of F , a wave of fixed shape

moving to the right with velocity c0 + U and G, a wave of fixed shape moving to the left

with velocity c0 − U .

As described in III.A, if we consider the wave moving to the right approaching the

eastern boundary, the boundary must satisfy G = 0 such that the boundary condition is

h(x, t) = F
(
x− (c0 +U)t

)
. Differentiating the boundary condition with respect to x and

t results in:

∂xh = F ′
(
x− (c0 + U)t

)
∂th = −(c0 + U)F ′

(
x− (c0 + U)t

)
,

which implies

∂th+ (c0 + U)∂xh = 0.
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Following the discussion for the reflection coefficient, this suggests the “educated” choice

of augmenting the Higdon parameter Cj with the added advection. This choice will be

revisited later in this dissertation.

C. GIVOLI-NETA AUXILIARY VARIABLE FORMULATION

In [29], Givoli and Neta directly extended the Higdon scheme to high-order finite

difference discretizations via an algorithm where the order of the NRBC was simply an

input parameter. They later extended this formulation [33] to one that does not involve

any high derivatives (hereafter referred to as the G-N formulation). The elimination of all

high-order derivatives is enabled through the introduction of special auxiliary variables on

B. This construction demonstrated in [33] and [34] for finite differences was further ex-

tended in [35] for finite element schemes to solve the dispersive wave equation. Hagstrom

and Warburton [36] also used the Higdon and auxiliary variable framework to develop a

symmetric boundary formulation in a full-space configuration where special corner com-

patibility conditions were developed for the non-dispersive wave equation. Extensions and

comparisons between the two methods were published by Givoli and Hagstrom et al. in

[37] and [38].

We present a brief summary of the G-N auxiliary variable process as described in

[35]. For the semi-infinite channel shown in Figure 5, this auxiliary formulation begins

with the Higdon boundary condition given by:

HJ :

[
J∏
j=1

(
∂x +

1

Cj
∂t

)]
h = 0 on ΓE. (III.11)

Auxiliary functions φ1, . . . , φJ−1, which are defined on ΓE as well as in the exterior do-

main D are now introduced. Eventually, we shall use these functions only on ΓE , but the

derivation requires that they be defined in D as well, or at least in a non-vanishing region
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adjacent to ΓE . The functions φj are defined via the relations

(
∂x +

1

C1

∂t

)
h = φ1 , (III.12)(

∂x +
1

C2

∂t

)
φ1 = φ2 , (III.13)

...(
∂x +

1

CJ
∂t

)
φJ−1 = 0 . (III.14)

By definition, these relations hold in D, and also on ΓE . It is easy to see that (III.12 -

III.14), when imposed as boundary conditions on ΓE , are equivalent to the single boundary

condition (III.11). If we also define

φ0 ≡ h φJ ≡ 0 , (III.15)

then we can write (III.12 - III.14) concisely as

(
∂x +

1

Cj
∂t

)
φj−1 = φj j = 1, . . . , J . (III.16)

This set of conditions involves only first-order derivatives. However, due to the appearance

of the x-derivative in (III.16), one cannot discretize the φj on the boundary ΓE alone.

Therefore we shall manipulate (III.16) in order to get rid of the x-derivative.

The function h satisfies the dispersive, advective wave equation (II.29) in D. Since

the function φ1 is obtained by applying the linear (constant coefficient) operator
(
∂x + 1

C1
∂t

)
to h, it is can be shown that φ1 should also satisfy the same equation in D4. Further, since

φj is obtained by applying the same linear operator j − 1 times to φ1, the functions φj
4Here we must use the assumption that c0 and f are constants. By applying the differential operator to

(II.29), computing each of the φj derivatives present in (III.17) using the differential operator and simplifying,
a simple induction argument shows that the φj’s must satisfy (III.17)
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should satisfy an equation like (II.29), namely,

(
∂tt +

(
U2 − c2

0

)
∂xx +

(
V 2 − c2

0

)
∂yy+

2U∂xt + 2V ∂yt + 2UV ∂xy + f 2
)
φj = 0 (III.17)

Using the following identities:

∂xxφj =

(
∂x −

1

Cj+1

∂t

)(
∂x +

1

Cj+1

∂t

)
φj +

1

C2
j+1

φ̈j

∂xtφj = ∂t (∂xφj)

∂xyφj = ∂y (∂xφj)

and combining with (III.16) allows us to write (III.17) as:

(
2U

Cj
− 1− U2 − c2

0

C2
j

)
φ̈j−1 +

(
2UV

Cj
− 2V

)
φ̇′j−1 −

(
V 2 − c2

0

)
φ′′j−1+((

U2 − c2
0

)( 1

Cj
+

1

Cj+1

)
− 2U

)
φ̇j − 2UV φ′j − f 2φj−1 =

(
U2 − c2

0

)
φj+1

for j = 1, . . . , J − 1. (III.18)

The details of this transformation are shown in Appendix D. In (III.18) and elsewhere, a

prime indicates differentiation with respect to y along ΓE , i.e., the tangential derivative

along ΓE . As desired, the new boundary condition (III.18) does not involve x-derivatives.

In addition, there are no high-y or t derivatives beyond second order. It should be noted that

van Joolen et al. [31] developed an equivalent formulation in using Lagrangian derivatives.
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Rewriting (III.12), (III.18) and (III.15), the new formulation of the J th-order NRBC

on ΓE can be summarized as follows:

β0ḣ+ ∂xh = φ1 , (III.19)

αjφ̈j−1 + κjφ̇
′
j−1 − λyφ′′j−1 + βjφ̇j − γφ′j − f 2φj−1 = λxφj+1 (III.20)

φ0 ≡ h φJ ≡ 0 (III.21)

where

β0 =
1

C1

, αj =
2U

Cj
− 1− U2 − c2

0

C2
j

, κj =
2UV

Cj
− 2V, λy = V 2 − c2

0,

βj =
(
U2 − c2

0

)( 1

Cj
+

1

Cj+1

)
− 2U, γ = 2UV, λx = U2 − c2

0

What remains is to link the boundary condition to the interior formulation. As will be

shown in the next chapter, the means to link the two formulations will naturally follow

from the spectral element framework.
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IV. DISCRETIZATION VIA SPECTRAL ELEMENTS

Once a suitable NRBC is devised, the problem must be solved numerically in Ω by

the finite difference, or, as in the case of this analysis, the spectral element (SE) method.

The SE method, originally introduced by Patera, “. . . combines the generality of the finite

element method with the accuracy of spectral techniques . . . ” [39, p. 468]. The key to the

spectral element (SE) method is the careful selection of the integration and interpolation

points in order to yield accurate but efficient solutions.

As indicated in Chapter III, the Givoli-Neta auxiliary variable formulation has been

previously demonstrated in both finite difference and finite element schemes to arbitrarily

high NRBC order, however, accuracy gains realized by increasing the NRBC order slowed

significantly after certain orders. The SE formulation used in this dissertation seeks to rem-

edy this limitation by using a high-order treatment of space (SE) to show the benefits of

using a high-order boundary (G-N) scheme. It should be noted that the only other spec-

tral element, high-order boundary approach (to the author’s knowledge) is [40] that is in

press. That paper shows how a SE approach combined with high-order boundary treatment

significantly improves the accuracy for the non-dispersive wave equation on a semi-infinite

channel using the Hagstrom-Warburton formulation [36]. The key difference in our work is

that we use high order space, boundary and time integration (discussed later in this disser-

tation) in both a dispersive and non-dispersive wave equation setting. We show the details

of early results (absent of advection) in [41].

What follows in this chapter is a brief overview of the SE method as presented by

Giraldo [42]. Additional treatment of this method can be found in Giraldo-Restelli [43] or

Pozrikidis [44]. For this problem, we will discuss two formulations - one for the interior

and one for implementing the boundary conditions.
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A. INTERIOR WEAK INTEGRAL FORMULATION

Finite difference schemes seek to discretize differential operators based on Taylor

series representations of the function near a point. Spectral element schemes seek to solve

the equations in a weak integral form. It can be shown that if the governing equations

satisfy the weak integral form, then they also satisfy the differential form provided the test

functions used are sufficiently differentiable.

The weak form of the problem in Ω is now constructed for the semi-infinite channel

described in III.A.2. Following a standard Galerkin approach, the solution is sought in the

space of test functions,

V = {h|h ∈ H1(Ω) and h = f(y, t) on ΓW}. (IV.1)

Here, H1(Ω) is the Sobolev space of functions whose first derivatives are also

square-integrable in Ω. Now, Equation (II.29) is multiplied by the globally defined basis

functions Ψi(x, y) ∈ V and integrated over Ω so the weak form is:

∫
Ω

Ψiḧ dΩ + λx

∫
Ω

Ψi
∂2h

∂x2
dΩ + λy

∫
Ω

Ψi
∂2h

∂y2
dΩ

+2U

∫
Ω

Ψi
∂ḣ

∂x
dΩ + 2V

∫
Ω

Ψi
∂ḣ

∂y
dΩ (IV.2)

+UV

∫
Ω

Ψi

(
∂2h

∂x∂y
+

∂2h

∂y∂x

)
dΩ + f 2

∫
Ω

Ψih dΩ = 0.

Here, ḣ and ḧ are the first second derivatives of h with respect to time. Further, ∂ḣ
∂x

and ∂ḣ
∂y

are the mixed second derivatives of h with respect to t, x and y.

In order to maintain a symmetric form of the problem, the mixed derivative has

been split appropriately. To ensure the solution h is in the vector space H1 requires some

special handling of the second order derivatives, which is facilitated by the use of Green’s

theorem, i.e., ∫
Ω

Ψi
∂2h

∂x2
dΩ =

∫
Γ

Ψi
∂h

∂x
nx dΓ−

∫
Ω

∂Ψi

∂x

∂h

∂x
dΩ
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where ~n is the outward normal on Γ and nx is the x-component of that outward normal.

Extending this idea for each second order derivative in (IV.2) gives the weak form:

∫
Ω

Ψiḧ dΩ− λx
∫

Ω

∂Ψi

∂x

∂h

∂x
dΩ− λy

∫
Ω

∂Ψi

∂y

∂h

∂y
dΩ

−UV
∫

Ω

(
∂Ψi

∂y

∂h

∂x
+
∂Ψi

∂x

∂h

∂y

)
dΩ

+2U

∫
Ω

Ψi
∂ḣ

∂x
dΩ + 2V

∫
Ω

Ψi
∂ḣ

∂y
dΩ + f 2

∫
Ω

Ψih dΩ (IV.3)

+λx

∫
Γ

Ψi
∂h

∂x
nx dΓ + λy

∫
Γ

Ψi
∂h

∂y
ny dΓ + UV

∫
Γ

Ψi

(
∂h

∂x
ny +

∂h

∂y
nx

)
dΓ = 0.

Recall that for the semi-infinite channel described in Figure 5, the corresponding

boundary conditions for ΓN and ΓS are ∂yh = 0, displacement is specified on ΓW and

ΓE is a non-reflecting boundary. Using these boundary conditions on the northern and

southern borders along with the normal vectors specified by the structured, rectangular

grid shown in Figure 6, the problem may be simplified to account for contributions on

individual boundaries. Using this information along with (III.19) to eliminate the normal

derivative term on ΓE , we get:
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Figure 6: Normal Derivatives to Boundaries
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∫
Ω

Ψiḧ dΩ− λx
∫

Ω

∂Ψi

∂x

∂h

∂x
dΩ− λy

∫
Ω

∂Ψi

∂y

∂h

∂y
dΩ

−UV
∫

Ω

(
∂Ψi

∂y

∂h

∂x
+
∂Ψi

∂x

∂h

∂y

)
dΩ

+2U

∫
Ω

Ψi
∂ḣ

∂x
dΩ + 2V

∫
Ω

Ψi
∂ḣ

∂y
dΩ + f 2

∫
Ω

Ψih dΩ (IV.4)

+λx

∫
ΓE

Ψiφ1 dΓE − β0λx

∫
ΓE

Ψiḣ dΓE

+UV

∫
ΓN

Ψi
∂h

∂x
dΓN − UV

∫
ΓS

Ψi
∂h

∂x
dΓS + UV

∫
ΓE

Ψi
∂h

∂y
dΓE = 0.

Note, that two of the boundary integrals (other than those on ΓE) survive after simplification

– namely on ΓN and ΓS . This occurs since the boundary condition (III.5) only specifies no

flux (i.e., reflecting boundary conditions) on these boundaries. This is a common boundary

condition for inviscid flow problems. 5

B. BOUNDARY WEAK INTEGRAL FORMULATION

Since the term φ1 appears in the interior formulation (IV.4), this is not a complete

weak form of the problem in Ω. We turn our attention to computing a separate weak form

for (III.20) to complete the problem statement. This solution is sought in the space of test

functions,

VΓE
= {φj|φj ∈ H1(ΓE)} (IV.5)

where H1(ΓE) is the Sobelov space of functions whose first derivatives are also square

integrable on ΓE .

As in the interior formulation, we multiply (III.20) by the globally defined, one-

dimensional basis functions (on the boundary) ζi ∈ VΓE
and integrate it over ΓE . After

5It should be noted that in this analysis, the two-dimensional basis functions, Ψi, are constructed using
tensor products of one-dimensional basis functions, ζi. This means that on the boundaries, these Ψi basis
functions collapse to ζi on the boundary. Therefore, in practice the boundary integrals are constructed using
ζi basis functions, requiring far less storage.
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integration by parts and simplifying this yields:

αj

∫
ΓE

ζiφ̈j−1 dΓE + κj

∫
ΓE

ζiφ̇
′
j−1 dΓE + λy

∫
ΓE

ζ ′iφ
′
j−1 dΓE + βj

∫
ΓE

ζiφ̇j dΓE

−γ
∫

ΓE

ζiφ
′
j dΓE − f 2

∫
ΓE

ζiφj−1 dΓE = λx

∫
ΓE

ζiφj+1 dΓE

(IV.6)

for j = 1, . . . , J − 1. As in the interior formulation (IV.2), φ̈ and φ̇ are the first and second

derivatives of φ with respect to time and φ̇′ is the tangential time derivative of φ. Recall

from the auxiliary variable formulation (III.21) that φ0 ≡ h and φJ ≡ 0.

The formal problem statement is then: Find h ∈ V and φj ∈ VΓE
where j =

1, . . . , J − 1, such that Equations (IV.4) and (IV.6) are satisfied ∀ Ψi ∈ V and ζi ∈ VΓE
.

C. GRID GENERATION AND CHOICE OF BASIS FUNCTIONS

One of the key advantages of the spectral (finite) element formulation over differ-

encing schemes is the ability to represent complex geometries by breaking up the domain

into simple geometric shapes. Triangles and quadrilaterals are primarily used to represent

these geometries in two-dimensions, while tetrahedra and hexahedra are primarily used to

represent geometries in three-dimensions. The sheer volume of grid generation software

available for generating triangles (tetrahedra) and the dearth of grid generation software for

quadrilaterals (hexahedra) suggests that the former are the more common means of repre-

senting the geometry of a problem. However, there are some very nice properties of the

latter that led to the choice of structured (and later unstructured) quadrilaterals to discretize

the geometry in this analysis.

While triangular grids are typically easier to generate, quadrilateral elements can

be formed directly, or more commonly, by combining two or four basic triangle elements

as shown in Figure 76. This idea can then be used to find an appropriate mesh for simple

or complex geometries. For this analysis, unstructured quadrilaterals were generated using

6Adapted from [45], Figure 5.2, p. 141.
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y

x

Figure 7: Arbitrary quadrilateral element formed by combining triangles.

Automesh-2D [46], an automatic mesh generator that provides high-quality results for the

domains considered in this dissertation. A sample of the mesh that can be generated is

shown in Figure 87. Noteworthy in this mesh is that the complex geometry of each letter

Ω has been broken up into approximately 200 non-overlapping quadrilateral elements Ωe

such that

Ω =
Ne≈200⋃
e=1

Ωe.

Further, each Ωe is constructed such that all internal angles are all between 30◦ and 150◦ –

a key criterion in providing a stable numerical solution.

Figure 8: Sample mesh generated using Automesh-2D.

To see why this criterion is important, consider a mapping from the physical co-

ordinate space to a canonical element space such that x = x(ξ, η) and y = y(ξ, η) where
7Geometry for the letters graciously provided by [46].
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(ξ, η) ∈ Ωc = [−1, 1]2. This nonsingular mapping is made to facilitate efficient and accu-

rate computation of operations such as differentiation and integration [47]. One such ele-

ment that illustrates this mapping can be seen in Figure 9. All derivatives are then mapped

x
( )1 1,x y ( )2 2,x y

( )3 3,x y

( )4 4,x y

( )1, 1− − ( )1, 1+ −

( )1, 1+ +( )1, 1− +

η

ξ

y

Figure 9: Mapping from physical space to computational space

to the canonical element space by virtue of the chain rule to yield the total derivative: dx

dy

 =

 ∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

 dξ

dη

 .

From the total derivative, we can find key components required for the evaluation

of the integrals induced by this canonical element mapping [42]. Such terms include the

transformation Jacobian and its associated determinant:

Je =

 ∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

 , |Je| = ∂x

∂ξ

∂y

∂η
− ∂y

∂ξ

∂x

∂η
, (IV.7)

as well as mappings of metric terms:

∂ξ

∂x
=

1

|Je|
∂y

∂η
,

∂ξ

∂y
= − 1

|Je|
∂x

∂η
,

∂η

∂x
= − 1

|Je|
∂y

∂ξ
,

∂η

∂y
=

1

|Je|
∂x

∂ξ
. (IV.8)

If any of the nodes comprising the elements approach interior angles of 180◦ (degenerating

the quadrilateral into a triangle), it can be shown that the transformation Jacobian at that
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point tends to 0 causing each of the metric terms to tend toward infinity thus corrupting the

solution. Derivation of the metric term mappings and consequences of degeneration of the

quadrilateral are detailed in Appendix E.

Crucial to the construction of SE approximations is the representation of the solu-

tion variables in terms of smooth basis functions Ψi. While in theory these basis functions

are defined throughout the entire domain Ω, they have compact support, and are in practice

constructed locally. This implies that we can solve the global problem by simply summing

up the contributions from the smaller elemental problems in a process known as direct

stiffness summation. Ideally, these basis functions will not only support the grid chosen,

but will also have properties that facilitate the numerical integration of the weak formula-

tion [48].

For this analysis, the local element-wise solution h is represented by N th order

Lagrange polynomials in (ξ, η) such that

hN(ξ, η) =

MN∑
k=1

ψk (ξ, η)h (ξk, ηk)

where (ξk, ηk) are theMN = (N + 1)2 Legendre-Gauss-Lobatto (LGL) interpolation points

and ψk are the associated multivariate Lagrange polynomial basis functions. The square

structure of the canonical element simplifies matters in that we can express ψk by a tensor-

product of the one-dimensional Lagrange polynomial basis functions as

ψk (ξ, η) = νi (ξ) νj (η)

where i, j = 1, 2, . . . , N + 1 and k = 1, 2, . . . ,MN . Further, νi and νj are the one-

dimensional basis functions generated using the LGL points in ξ and η. To get from the

one-dimensional local indices (i, j) to the two-dimensional local index k requires the map-

ping k = i+ (j − 1) (N + 1).
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The choice of the LGL points for interpolant generation have the especially attrac-

tive property of allowing efficient quadrature. In particular, any polynomial of up to degree

2N − 1 can be integrated exactly (to machine precision) by evaluating it at only N + 1

points. Additionally, if the interpolation points are also used as the sampling points in the

Gaussian quadrature rule, it has the added benefit of yielding a diagonal mass matrix as the

LGL-based basis functions Ψ satisfy a discrete orthogonality via the cardinality property

of the Lagrange basis functions. The effect of these choices is to allow the appropriately

weighted summation of the basis function expansion of h to evaluate all integrals. There-

fore, to approximate a local elemental integral, we find

∫
Ωe

h(x, y)dΩe =

∫
Ωc

h (ξ, η) |Je|dΩc

≈
N+1∑
i,j=1

ω (ξi)ω (ηj)h (ξi, ηj) |Je (ξi, ηj) |

where ω (ξi) and ω (ηj) are the quadrature weights associated with one-dimensional LGL

quadrature and Ωc is the canonical element region of integration. This process is described

in greater detail in [42].

D. GALERKIN EXPANSION

We now turn our attention to the spatial discretization. First, we construct the N th-

order approximation of the variables h and φj using the same basis functions used in the

weak form IV.4 and IV.6 as follows:

hN =

Np∑
k=1

Ψkh
k, φjN =

Nb∑
k=1

ζkφ
k
j , j = 1, 2, . . . , J − 1.

Here, Np and Nb are the number of points that Ω and ΓE are discretized into, repsectively.

For a structured quadrilateral grid with Nx
e and Ny

e elements in the x and y directions,

Np = (Nx
eN + 1) (Ny

eN + 1) and Nb = Ny
eN + 1. Next, we substitute this basis function
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expansion directly into the weak formulations, resulting in the following interior

Mḧ+ (2UDx + 2V Dy) ḣ+
(
−λxLxx − λyLyy + f 2M − UV (Lyx + Lxy)

)
h (IV.9)

+λxAEφ1 − β0λxBEḣ+ (UV CN − UV CS + UV CE)h = 0

and boundary

αjM
bφ̈j−1 + ζjD

bφ̇j−1 +
(
λyL

b − f 2M b
)
φj−1 (IV.10)

+βjM
bφ̇j − γDbφj − λxM bφj+1 = 0, j = 1, . . . , J − 1

forms of the problem. Here, M,Dx, Dy, Lxx, Lyy, Lxy and Lyx are interior formulation

matrices of size Np × Np. Further, BE , CN , CS and CE are interior formulation matrices

integrated along the boundaries of size Np × Np while AE is of size Np × Nb. Finally,

M b, Db and Lb are auxiliary formulation matrices of size Nb × Nb. These global matrices

are obtained from analogous element arrays via assembly, given by:

M =
Ne∧
e=1

M e, BE =
Ne∧
e=1

Be
E, Dx =

Ne∧
e=1

De
x, Dy =

Ne∧
e=1

De
y

Lxx =
Ne∧
e=1

Lexx, Lyy =
Ne∧
e=1

Leyy, Lxy =
Ne∧
e=1

Lexy, Lyx =
Ne∧
e=1

Leyx,

M b =

Nb∧
b=1

mb, Db =

Nb∧
b=1

db, Lb =

Nb∧
b=1

lb, CN =
Ne∧
e=1

Ce
N ,

CS =
Ne∧
e=1

Ce
S, CE =

Ne∧
e=1

Ce
E, AE =

Ne∧
e=1

AeE
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where
Ne∧
e=1

is the direct stiffness summation operator required by all continuous Galerkin

methods. The expressions for the element arrays are:

M e
ij =

∫
Ωe

ψiψj dΩe Be
E,ij =

∫
Γe

ψiψj dΓe De
x,ij =

∫
Ωe

ψi
∂ψj
∂x

dΩe

De
y,ij =

∫
Ωe

ψi
∂ψj
∂y

dΩe Lexx,ij =

∫
Ωe

∂ψi
∂x

∂ψj
∂x

dΩe Leyy,ij =

∫
Ωe

∂ψi
∂y

∂ψj
∂y

dΩe

Lexy,ij =

∫
Ωe

∂ψi
∂y

∂ψj
∂x

dΩe Leyx,ij =

∫
Ωe

∂ψi
∂x

∂ψj
∂y

dΩe mb
rs =

∫
Γe

νrνs dΓe

dbrs =

∫
Γe

νrν
′
s dΓe lbrs =

∫
Γe

ν ′rν
′
s dΓe Ce

N,ij =

∫
ΓN
e

ψi
∂ψj
∂x

dΓNe

Ce
S,ij =

∫
ΓS
e

ψi
∂ψj
∂x

dΓSe Ce
E,ij =

∫
ΓE
e

ψi
∂ψj
∂y

dΓEe AeE,ir =

∫
ΓE
e

ψiνr dΓEe

where Ωe and Γe denote, the part of Ω and Γ associated with element e. Also, ψi and νi

are the locally defined basis functions from which the global basis functions (Ψi and ζi) are

formed. For quadrilateral elements with polynomial orderN as used in this analysis, ψi will

be discretized into (N+1)2 points, and νi into (N+1) points, thus, i, j = 1, 2, . . . (N+1)2

and r, s = 1, 2, . . . N + 1.

Now, let:

A = M−1 (β0λxBE − 2UDx − 2V Dy)

B = M−1
(
λxLx + λyLy − f 2M + UV (Lxy + Lyx − CN + CS − CE)

)
(IV.11)

C = −λxM−1AbE

and substitute equations (IV.11) into (IV.9) to get the matrix form of the interior problem:

ḧ = Aḣ+ Bh+ Cφ1 (IV.12)
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If we examine the boundary auxiliary variable formulation (III.20), we see that

the selection of appropriate Cj values for the auxiliary variables has not yet been fully

addressed. As discussed in III.A.2, any choice of Cj is guaranteed to reduce spurious

reflection as the order of the NRBC (J) increases, however based on the discussion in

III.B, the Higdon parameter should somehow be augmented with the advection.

Armed with this, we choose convenient values for our Cj’s that cause the second

order in time (αj) terms to vanish. In the case of the semi-infinite channel, on the eastern

boundary this value is: Cj = c0 + U . A physical argument for this choice is that since the

predominant speed of the wave, absent the advection terms, is c0, the Cj terms “correct” the

boundary formulation to account for the advection. This selection for the Cj’s then makes:

α1 = α2 = . . . = αJ−1 = 0,

κ1 = κ2 = . . . = κJ−1 = κ,

β1 = β2 = . . . = βJ−1 = β

Now, let:

D = f 2M b − λyLb (IV.13)

and substitute (IV.13) into (IV.10) to get the following form of the problem:

βM bφ̇1 = D hΓE
− κ Db u̇Γ + γDb φ1 + λxM

bφ2

κ Db φ̇1 + βM bφ̇2 = D φ1 + γDb φ2 + λxM
bφ3

κ Db φ̇2 + βM bφ̇3 = D φ2 + γDb φ3 + λxM
bφ4

...

κ Db φ̇J−2 + βM bφ̇J−1 = D φJ−2 + γDb φJ−1
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where hΓE
is the value of h on ΓE . If we now collect the terms on the left and right, we get

the matrix form of the problem:

EΦ̇ = FΦ + h (IV.14)

where:

E =


βM b 0 . . . 0

κDb βM b . . . 0
...

... . . . ...

0 0 κDb βM b

 , F =



γDb λxM
b 0 . . . 0

D γDb λxM
b . . . 0

... . . . . . . . . . ...

0 0 D γDb λxM
b

0 0 0 D γDb



Φ =


φ1

φ2

...

φJ−1

 , Φ̇ =


φ̇1

φ̇2

...

φ̇J−1

 and h =


DhΓE

− κDbḣΓE

0
...

0

 .
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V. SOLUTION OF THE DYNAMIC SYSTEM

The equations described by (IV.12) and (IV.14) constitute a coupled system of

ODEs that must be solved for h(x, y, t). Our approach uses standard kth order explicit

Runge-Kutta (RK) methods to integrate the system in time. Recall that RK is used to solve

first order ODEs, and as such, the second order systems described must be converted into

a larger system of first order ODEs. Using the substitution v = ḣ , v̇ = ḧ yields the first

order systems:  I 0

0 I

  ḣ

v̇

 =

 0 I

B A

 h

v

+

 0

Cφ1



EΦ̇ = FΦ + h.

(V.1)

This system was solved using a two-stage approach at each time step. First, the auxiliary

system was solved to find the component φ1 required for the main system. Then the main

system was solved to find h at the next time step. This process was continued until the final

time tf was reached.

A. RUNGE-KUTTA METHODS

RK methods are convenient in this analysis in that the machinery to decrease the

truncation error is the same for 2nd, 3rd or even kth order schemes. While there are other

schemes that require fewer function evaluations and, in fact, are more efficient than the

explicit RK schemes used in this dissertation, we desired a method that could change the

order of the time integration method simply as a parameter while using the same basic

formulation. RK methods use a standard formulation that is outlined as follows.
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To obtain an approximation to the solution of the initial value problem

y′ = f (t, y (t)) , y (t0) = y0

a successive approximation yn+1 to yn is given by

yn+1 = yn +4t
s∑
i=1

biki

where ki = f

(
tn + ci4t, yn +4t

s∑
j=1

aijkj

)
i = 1, 2, . . . s.

Here, the coefficients aij, bi and ci are given by the Butcher tableau for the given RK

scheme. The classical explicit RK-4 scheme is given by

c1 a11 a12 a13 a14

c2 a21 a22 a23 a24

c3 a31 a32 a33 a34

c4 a41 a42 a43 a44

b1 b2 b3 b4

⇒

0 0 0 0 0

1
2

1
2

0 0 0

1
2

0 1
2

0 0

1 0 0 1 0

1
6

1
3

1
3

1
6

.

For this analysis, all coefficients were computed using MapleTM using routines coded by

Stone [49]. These routines allow for high precision computation of the coefficients re-

quired for each high-order tableau. Of course, the computational complexity increases for

increased RK order. To be specific, the required number of function evaluations (stages)

and non-zero parameters required for the kth order RK method are given in Table 1

Table 1: Computational cost for RK methods used.

RK Order 2 3 4 5 6 7 8 9 10
Stages 2 3 4 6 7 9 11 16 18

Parameters 3 8 10 22 33 45 59 102 113
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B. SIMPLE EXAMPLE OF CONVERGENCE

To see the effect of high-order time integration, consider the simple initial value

problem
dy

dt
= f(t, y) = (2− t) y, y(0) = e−2 (V.2)

whose solution is

y(t) = e−0.5(t−2)2

.

Now, we integrate (V.2) in time using our RK schemes (RK-2 - RK-10) from t = 0 to t = 5

and quantify the errors observed over time between the exact and RK solution using the

normalized L2 error defined as follows:

||error||L2 =


N∑
n=1

(
yn − y(n4t+ t0)

)2

N∑
n=1

y(n4t+ t0)2


1
2

where yn and y(n4t+ t0) are the numerical and reference solutions at a given time.

Using a time-step 4t = 0.05, we see exponential convergence (to near machine

precision) of the error as indicated in Figure 10. It should be noted that in this example,

even if an extremely fine time step is chosen, the computed error using lower order RK

methods cannot achieve machine precision.

Take for instance the RK-4 method that has a truncation error of O (4t4). A step

size of 4t = 10−4 should result in an error O (10−16), yet experimentally, the error is

O (10−12). This apparent discrepancy can be explained by the round-off error due to the

finite-precision arithmetic (double) used in the computation. This error increases with the

total number of integration steps used. This implies that to integrate (V.2) from t = 0

to t = 5, we must evaluate f(t, y) a total of 200,000 times for RK-4 at a time-step of

4t = 10−4. If we compare this with a time-step of 4t = 0.025 using RK-10, this should

result in an error O (10−16). To integrate (V.2) using RK-10 for the same period of time,
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Figure 10: L2 error in solution of (V.2) using RK-2 – RK-10 time integration.

we must evaluate f(t, y) only 3,600 times. Experimentally, RK-10 achieves this O (10−16)

error convergence, thus highlighting the importance of round-off error in the convergence

of the time integration scheme.

To check the convergence of these RK methods for reasonable time-step values

4t ∈ [0.001, 1], consider the rate of convergence adapted from [50] and defined as follows:

rate =
log
(
error4tn+1

)
− log (error4tn)

log (4tn+1)− log (4tn)
. (V.3)

This rate is a measure of how rapidly a given time integration method converges as a func-

tion of the time-step refinement. Figure 11 shows the normalized L2 error as a function

of the time-step refinement. For each RK order, the rate of convergence is averaged over

all 4t refinement levels. This average rate is annotated for each RK order and shows, as

expected, that the maximum rate of convergence is the RK order. From this figure, we

see that this theoretical rate of convergence is nearly reached in every case. It should be

noted that once errors reach O (10−15), round off errors prevent further improvements us-

ing a given RK method, and as already discussed, these errors actually prevent theoretical

improvements of lower order (RK-2 and RK-4) methods.
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Figure 11: L2 error as a function of time-step refinement. Rates as defined by (V.3) should
correspond to RK order.

Of course, one might wonder why such high precision when integrating in time

would ever be required. For most engineering applications, where the model parameters

themselves are approximated, this argument is a strong one. Perhaps a lower order time

integrator would result in errors that are on the same order as the model parameters and

any computational effort incurred in using a high-order time integrator would be wasted.

However, since this work centers on the use of high-order spectral elements along with

high-order boundary conditions; high-order time-integrators were also explored to examine

all of the limiting factors of high-order accuracy.

We propose that in order to see the full improvements of high-order boundary con-

ditions requires a balance of truncation errors (and round-off errors) between all of the

components of the numerical model; this includes the boundary conditions, the spatial

discretization method, and the time-integrators. Practically speaking, we believe that the

mathematical formulation should be the strong point of any model evaluation, specifically,
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the order of the method should be chosen to match (or exceed) other errors inherent in the

model. Experiments in this dissertation were conducted using boundary conditions up to

order 20, SE polynomials up to order 16, and time-integrators up to order 10.
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VI. NUMERICAL EXPERIMENTS

Several numerical experiments were performed to solve the Klein-Gordon equiv-

alent (II.29) with and without dispersion and advection. Additionally, we consider five

primary configurations: semi-infinite channel, infinite channel, quarter plane, open plane,

and open unstructured plane. Each of these configurations will be described in detail later

in this chapter.

In order to simplify the numerical simulation of the problem at hand, the KGE

(II.29) is converted to a non-dimensional form as described in [51]. Using typical mesoscales

in the ocean, the length scales were chosen O(100 km), vertical depth scales O(100 m) and

the dispersion parameter f for Coriolis O(10−4s−1). Majda [51, page 61] describes typical

advective velocities as roughly 3
100

that of the medium wave speed c0. Here, we choose

to challenge the boundary further by choosing faster advective velocities at 1
10

that of the

medium wave speed. The derivation details of the non-dimensional formulation are given

in Appendix F.

For experiments that follow, the reference wave speed is c0 = 1, which allows the

initial wave to propagate through the region of interest in a reasonable time for all exper-

iments. Given the scale choices above yields a dispersion parameter f 2 of 0.1, however,

to ensure that dispersion is felt, we choose f 2 = 0.5 corresponding to more than doubling

of the angular velocity of the earth. Further, U and V are set to 0.0 or 0.1 under a two-

dimensional Gaussian initial condition to test the formulation in a semi-infinite and infinite

channel setting.

The experiments begin with an analytic benchmark where a solution is synthesized

to the KGE and compared to results obtained using the NRBCs. The chapter continues with

more general experiments, which do not have analytic solutions. In channel experiments,

two different initial conditions were tested. The first is a two-dimensional cosine pulse

where b is the height of the channel (in all cases we used b = 4). This pulse is chosen with

compact support such that the waves are generated only in a narrow region of the domain

55



and is zero elsewhere. Additionally, the initial condition (by design) satisfies the no-flux

boundary conditions on the northern and southern boundaries. The initial condition is given

by

h(x, y, 0) = e−10x2

cos

(
4πy

b

)
, ḣ(x, y, 0) = 0. (VI.1)

The other initial condition used in the channel and remaining experiments is a two-dimensional

Gaussian centered at x = 0, y = 0, given by

h(x, y, 0) = e−10(x2+y2), ḣ(x, y, 0) = 0. (VI.2)

In order to see the effect of the NRBC, we compare our solutions to the one com-

puted on a larger domain (for all experiments except the analytic benchmark). We consider

this reference solution “exact” when using equal order basis functions on a fine mesh,

defined in greater detail in each of the subsequent experiments. Time integration was per-

formed using various order Runge-Kutta schemes using a time-step chosen to ensure a

Courant number of 0.25, where the Courant number is conservatively defined:

Courant number =
c04t√

(4x)2 + (4y)2
(VI.3)

Here, 4x and 4y are chosen as the minimum distance between any two points in the

x or y directions respectively. This choice is made since the interpolation points are not

uniformly distributed when using spectral elements. Consider a canonical element using

8th order basis functions with points chosen using the LGL interpolation points described

in Chapter IV. As shown in Figure 12, these points are distributed in such a way to facilitate

interpolation and integration and are not uniformly distributed.
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Figure 12: Canonical element using 8th order basis functions showing distribution of grid
points.

In order to quantify the errors observed between the reference and NRBC solutions,

we use the normalized L2
Ω error defined as follows:

||error||L2
Ω

=


Np∑
k=1

(
hNk − hRk

)2

Np∑
k=1

(
hRk
)2



1
2

(VI.4)

whereNp is number of points in Ω and hNk and hRk are the numerical and reference solutions

at point k. What follows is a series of experiments that were designed to demonstrate the

efficacy of the G-N NRBCs.

A. ANALYTIC BENCHMARK SOLUTION OF SEMI-INFINITE HORIZON-
TAL CHANNEL

Recall the semi-infinite channel formulation discussed in Chapter IV that we now

implement. Specifically, ΓW is introduced at xW = −2 and no-flux boundary conditions

are specified on ΓN and ΓS such that ∂yh = 0. Finally, the G-N NRBC B is introduced at

57



xE = 2 and advection in the x and y directions are set to zero. This specific situation is

shown in Figure 13.

y

xW

N

S

b=4

xW=-2 xE=2

yN=2

yS=-2

B

Figure 13: The semi-infinite channel domain under consideration. Domain is truncated by
an artificial boundary B at xE = 2.

A priori, we synthesize a solution that satisfies the KGE with zero advection. Kucherov

and Givoli [40] use a similar benchmark in a non-dispersive environment for a single wave

mode. The solution used here is a linear combination of two waves and has the form

hbm(x, y, t) =
2∑

m=1

cos
(nmπy

b

)
cos (kmx− ωmt+ φm) (VI.5)

where the parameters are the same as defined in (III.6). Given choices for k, b, c0, n, f and

φ, we can determine ω to satisfy the KGE. Here, we choose k =
{
π
2
, π

4

}
, b = 4, c2

0 = 1,

n = {2, 4} , f 2 = 0.5 and φ = {0, π}. These choices ensure that the no-flux boundary

conditions on ΓN and ΓS are upheld and the gradients on either side of the NRBC are

matched at t = 0. For the NRBC solution, we specify the values for hΓW
based on the

analytic solution. These parameter choices result in horizontal phase velocities Ck of 1.48

and 4.22 for each of the waves.

The NRBC parameters are selected simply as Cj = c0, ∀j as described in Chap-

ter IV.D. Recall that this choice eliminates the second order time integration terms in the

boundary formulation. In theory, if the Cj parameters were chosen to match the horizon-

58



tal phase velocities, J = 2 would be highest order NRBC required. In general problems,

however, these phase velocities are not normally known a priori. We therefore keep our for-

mulation general, relying on the fact that simply increasing the NRBC order is guaranteed

to reduce the reflection caused by the boundary.

1. Results

In Figure 14, we show the reference solution on the top panel and the solution on

the J = 4 NRBC truncated domain on the bottom panel at t = 3. The NRBC solution uses

4th order spectral elements on a 24 × 24 element grid, discretizing the domain into 9,409

points. Qualitatively speaking, the results show very little reflection when compared to the

synthesized solution.
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Figure 14: Semi-infinite channel comparing synthesized solution and the NRBC solution.
4th order spectral elements using NRBC order J = 4 with zero advection at t = 3 are
shown.

Quantitative results can be observed in Figure 15 showing the error on Ω as a func-

tion of spectral and NRBC order (J = 1, . . . , 10, 15, 20). The number of elements is ad-

justed for each spectral order to maintain an equal number of points (9,409) that the domain

is discretized into. It is clear that increasing the NRBC order yields significant gains in ac-

curacy, but by J = 5, the spatial discretization error dominates NRBC error in the low
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order element (order 1 and 2) cases. However, by increasing the polynomial order of the

elements, this spatial discretization error decreases and allows the true accuracy of the

NRBC to be realized.
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Figure 15: Semi-infinite channel L2
Ω error versus NRBC and spectral element order. Do-

main is discretized into 9,409 points for all spectral element orders with zero advection at
t = 3.

B. SEMI-INFINITE HORIZONTAL CHANNEL

For most problems, where initial data is generated from physical measurements,

it would be impossible to generate an analytic solution with which to compare the NRBC

solution. In this experiment, we use the initial data as described in (VI.1) and (VI.2) to gen-

erate the waves in the solution. To see the effect of the boundary condition, we compare

our solution to one computed on a larger domain, i.e., −2 < x < 10 where a homogeneous

Dirichlet boundary condition h(10, y, t) = 0 is prescribed for ΓE , replacing the NRBC. For

this experiment, the discretization is chosen to maintain a mesh of 28,033 grid points for

each spectral order. Time integration is performed with RK-8 to ensure the time discretiza-

tion is not a limiting factor in computing the reference solution. We then solve the extended

domain solution for t = 3, ensuring that the disturbance has time to propagate through the

artificial boundary, yet has not had time to reach the eastern boundary.
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1. Semi-Infinite Channel with Zero Advection Results

In Figure 16(a), we plot the reference solution on the top panel and the solution of

the truncated domain using the J = 4 G-N NRBC on the bottom panel. The solution on the

truncated domain uses 4th order spectral elements on a 24 × 24 element grid, discretizing

the domain into 9,409 grid points. Qualitatively speaking, the results show very little re-

flection using the combination of high-order elements and NRBC. Quantitative results can
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(a) h(x, y, 3): U = 0, V = 0
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Ω: U = 0, V = 0

Figure 16: Semi-infinite channel, 4th order spectral elements (J = 4) using cosine pulse
initial condition and zero advection. Left Plot: Contour plot showing h(x, y, 3) on ex-
tended and truncated domains. Right Plot: Corresponding L2

Ω error versus NRBC and
spectral element order. Domain is discretized into 9,409 points for all spectral element
orders.

be observed in Figure 16(b) showing the error on Ω as a function of SE and NRBC order

(J = 1, . . . , 10, 15, 20). The number of elements is adjusted for each polynomial order to

maintain an equal number of points (9,409) that the domain is discretized into.

It is clear that increasing the NRBC order yields significant gains in accuracy, but

by J = 5, the spatial discretization error dominates NRBC error in the low order element

(order 1 and 2) cases. However, by increasing the spectral order of the elements, this spatial

discretization error decreases and allows the true accuracy of the NRBC to be realized.

Similar qualitative and quantitative results are found using the Gaussian initial data and are

shown in Figure 17.
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Ω: U = 0, V = 0

Figure 17: Semi-infinite channel, 4th order spectral elements (J = 4) using Gaussian initial
condition with zero advection. Left Plot: Contour plot showing h(x, y, 3) on extended
and truncated domains. Right Plot: Corresponding L2

Ω error versus NRBC and spectral
element order. Domain is discretized into 9,409 points for all spectral element orders.

2. Semi-Infinite Channel with Constant Advection Results

In this section, we continue the analysis on the semi-infinite channel, this time

adding constant advection in various directions. In this setting, we again must consider

the selection of the Higdon parameters Cj . For the semi-infinite channel, we make our

educated choice described in Chapters III.B and IV.D of augmenting the parameter value

with the added advection. In the case of the eastern boundary NRBC, this yields a choice

of Cj = c0 + U which has the simplifying feature of making the boundary condition only

first order in time.

In Figure 18(a), we replicate the comparison plot between the reference solution

and the truncated domain solution. Here, we use J = 4 G-N NRBC and 4th order spectral

elements on the same 24 × 24 element grid, this time with constant advection U = 0.1

and V = 0. Qualitatively speaking, the results show very little reflection using the com-

bination of high-order elements and NRBC. Further, if comparing this solution with the

zero advection case, one notes the expansion of the wave in the direction of advection and

compression where the wave is traveling against the direction of advection. These results

match intuition and is the same behavior that van Joolen noted in [16, p. 108].
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(a) h(x, y, 3): U = 0.1, V = 0
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Ω: U = 0.1, V = 0

Figure 18: Semi-infinite channel, 4th order spectral elements (J = 4) using cosine pulse
initial condition with advection velocities U = 0.1 and V = 0. Left Plot: Contour plot
showing h(x, y, 3) on extended and truncated domains. Right Plot: Corresponding L2

Ω

error versus NRBC and spectral element order. Domain is discretized into 9,409 points for
all spectral element orders.

Quantitative results can be observed in Figure 18(b) showing the error on Ω as

a function of SE and NRBC order (J = 1, . . . , 10, 15, 20). The number of elements is

again adjusted for each polynomial order to maintain an equal number of points (9,409)

that the domain is discretized into. It is again clear that increasing the NRBC order yields

significant gains in accuracy, but the spatial discretization error dominates NRBC error in

the low order element (order 1 and 2) cases.

Error is monotonically decreasing for each SE order, however, an interesting “dip”

occurs for J = 3. Anomalies such as this can occur when choosing the Cj’s in a general

manner as we have undertaken in this example. While the reflection coefficient guarantees

that the reflection caused by the boundary will decrease as J increases, it says nothing about

how much it will decrease. This depends heavily on the choice of the Cj’s; in this example,

it is believed that our general Cj choice for J = 3 happened to annihilate a significant

wave mode or modes, resulting in better performance of the boundary condition. Similar

qualitative and quantitative results are found using the Gaussian initial data and are shown

in Figure 19.
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Figure 19: Semi-infinite channel, 4th order spectral elements (J = 4) using Gaussian initial
condition with advection velocities U = 0.1 and V = 0. Left Plot: Contour plot showing
h(x, y, 3) on extended and truncated domains. Right Plot: Corresponding L2

Ω error versus
NRBC and spectral element order. Domain is discretized into 9,409 points for all spectral
element orders.

As discussed in Chapter III, the Higdon NRBC implicitly assumes that any wave

impinging on the NRBC is traveling primarily as a plane wave normal to the boundary. The

previous example, where the advection velocity was in the same direction as the channel

does not significantly challenge this assumption. In other words, to really test the value of

the boundary condition, one must try advection velocities with some tangential component

to the boundary. For these experiments, we consider only the Gaussian initial condition8.

Figures 20(c) and 20(d) show the same L2
Ω plots for advection velocities in other

directions, one being the contrived case where the advection is perfectly tangential to the

NRBC. These L2
Ω plots correspond with the contour plots directly above that show the

comparative solutions. Examining these results, it is clear that the boundary condition –

even when put to a test with a wave pulse containing a significant tangential component

to the boundary – performs well. It is noted that the order of the error suffers more under

diagonal advection when compared to its individual axial counterparts. This may be due to

8Since the cosine pulse initial condition was constructed to ensure that the boundary condition on ΓN and
ΓS were automatically satisfied, any tangential advection would cause this condition to break down. For this
reason, we choose to illustrate general results using only the Gaussian initial condition.
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the additional terms activated in the interior and boundary formulations (IV.9) and (IV.10)

when U and V are simultaneously nonzero.

It should be further noted that as advection velocities are taken larger, the associated

errors grow as well. In fact, experimentation shows that the formulation actually becomes

unstable for high-order NRBCs as the velocities approach the reference wave speed c0.

This is the same behavior noted by van Joolen in [31] when examined in a finite difference

setting. This behavior does not seem to manifest itself, however, unless the advection

velocities are taken much larger than would be expected in a geophysical setting. Further,

this behavior seems to be exacerbated in all diagonal advection cases when using high-

order (N = 16) basis functions. To counter this high-order instability, we implement high-

frequency wave filtering as described by Giraldo et al. in [47, 50] when using N = 16

basis functions. As in [47], we apply the filter every 10 time-steps at 20% strength.

C. INFINITE HORIZONTAL CHANNEL

For the next set of experiments, the domain is an infinite channel with the NRBCs

located at x = ±2. The set-up is similar to that of the semi-infinite channel in that no-

flux boundary conditions are specified on ΓN and ΓS . Further, ΓE is exactly the same

NRBC defined previously. This time, however, we prescribe another NRBC B on ΓW .

This specific situation is shown in Figure 21.

The adjustments required for the western NRBC follow from the original derivation

of the Higdon boundary condition as given in Chapter III.A. Now, instead of considering

the right moving component of the wave approaching ΓE , we consider the left moving

component of the wave approaching ΓW . To perfectly absorb the wave impinging on the

boundary, we insist that F = 0 in (III.10) such that the boundary satisfies the one-way

advection equation h(x, t) = G
(
x + (c0 − U)t

)
. The corresponding Higdon boundary

condition is then given by:

HJ :

[
J∏
j=1

(
∂x −

1

Cj
∂t

)]
h = 0 on ΓW . (VI.6)
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(c) L2
Ω: U = 0.0, V = 0.1
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Figure 20: Semi-infinite channel, 4th order spectral elements (J = 4) using Gaussian initial
condition with advection velocities specified. Top Plots: Contour plots showing h(x, y, 3)
on extended and truncated domains. Bottom Plots: Corresponding L2

Ω error versus NRBC
and spectral element order. Domain is discretized into 9,409 points for all spectral element
orders.

In the experiments that follow, we use the initial data as described in (VI.1) and

(VI.2) to generate the waves in the solution. To see the effect of the boundary condi-

tion, we compare our solution to one computed on a larger domain, i.e., −6 < x < 6

where homogeneous Dirichlet boundary conditions h(−6, y, t) = 0 and h(6, y, t) = 0 are

prescribed for ΓW and ΓE , replacing the NRBCs. The discretization is again chosen to

maintain a mesh of 28,033 grid points for each SE order. Time integration is performed

with RK-8 to ensure the time discretization is not a limiting factor in computing the ref-

erence solution. We then solve the extended domain solution for t = 3, ensuring that the
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Figure 21: The infinite channel domain under consideration. Domain is truncated by artifi-
cial boundaries at xW = −2, and xE = 2.

disturbance has time to propagate through the artificial boundaries, yet has not had time to

reach the Dirichlet boundaries.

1. Weak Form Adjustments

Using a similar strategy for introducing a set of auxiliary variables for the western

NRBC, applying them to the KGE equivalent, then converting any normal derivatives on

the boundary to time and tangential boundaries, results in another, very similar formulation

that is directly incorporated into the weak form (IV.3). The details of this formulation can

be viewed in Appendix G. The selection of parameters Cj follows the “convenient” choice

as developed for the eastern boundary, namely, to remove the second order in time auxiliary

variable term by augmenting the reference wave speed with advection. This choice is

Cj = c0 − U for the western boundary. Similar experiments to those run in the semi-

infinite channel were conducted using various advective velocities.

2. Infinite Channel with Various Advection Velocities Results

Qualitative and quantitative results using the cosine pulse initial condition are shown

in Figure 22. In Figure 22(a), we plot the reference solution on the top panel and the solu-

tion of the truncated domain using the J = 4 G-N NRBC on the bottom panel. Quantitative
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results can be observed in Figure 22(b) showing the error on Ω as a function of SE and

NRBC order. In Figure 22(c), we replicate the comparison plot between the reference solu-

tion and the truncated domain solution, this time with left to right advection. Quantitative

results can be observed in Figure 18(b) showing the error on Ω as a function of SE and

NRBC order. In both cases, the number of elements is again adjusted for each polynomial

order to maintain an equal number of points (9,409) that the domain is discretized into.
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Figure 22: Infinite channel, 4th order spectral elements (J = 4) using cosine pulse initial
condition with advection velocities specified. Left Plots: Contour plots showing h(x, y, 3)
on extended and truncated domains. Right Plots: Corresponding L2

Ω error versus NRBC
and spectral element order. Domain is discretized into 9,409 points for all spectral element
orders.
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Similar qualitative and quantitative results are found using the Gaussian initial data

and are shown in Figure 23. It is noted that the order of the error again suffers more under

diagonal advection when compared to its individual axial counterparts.

D. OPEN DOMAIN CONSIDERATIONS

In the construction of the G-N NRBCs presented thus far, we have assumed that all

boundaries are aligned with the axial coordinates. Further, no two NRBCs have ever been

placed adjacent to each other. In this section, we examine the consequences of placing

NRBCs adjacent to each other in two configurations, namely the quarter plane and the

open plane. This set-up is similar to the channel configurations described thus far in that

the infinite domain is truncated via artificial boundaries B thus dividing the domain into a

finite computational domain Ω and a residual domain D. The only thing that changes is the

configuration of the artificial boundaries.

Specifically, the quarter plane is described as a domain that is bounded by physical

boundaries ΓW and ΓS . NRBCs are introduced at x = xE and y = yN . The physical

boundaries are homogeneous Dirichlet conditions h = 0 on ΓW and ΓS . This set-up is

illustrated in Figure 24(a). The open plane is described as a domain that is unbounded on

all sides. To compute a solution on such a domain, NRBCs are introduced at x = xW , xE

and y = yS, yN . This setup is illustrated in Figure 24(b). Artificial boundaries for ΓS and

ΓN are developed as outlined in Appendix G.

1. Corner Compatibility Concerns

To begin this discussion, consider the quarter plane. A source of concern is the

method of handling the intersection point of ΓE and ΓN . After all, the auxiliary variable

form described in (III.20) and (G.9) are PDEs themselves and therefore require appropriate

boundary conditions to be well-posed. In the channel, the no-flux conditions specified by

the problem statement were applied to the auxiliary variables to make the problem well-

posed. In the quarter plane, we have the homogeneous Dirichlet conditions for the western

boundary of ΓN and the south boundary of ΓE , but there are no such boundary conditions
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Figure 23: Infinite channel, 4th order spectral elements (J = 4) using Gaussian initial
condition with advection velocities specified. Left Plots: Contour plots showing h(x, y, 3)
on extended and truncated domains. Right Plots: Corresponding L2

Ω error versus NRBC
and spectral element order. Domain is discretized into 9,409 points for all spectral element
orders. 70
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Figure 24: Left Plot: A semi-infinite domain Ω truncated by artificial boundaries ΓE and
ΓN . Right Plot: An infinite domain Ω truncated by artificial boundaries ΓS,ΓE,ΓN and
ΓW .

that can be applied to the east of ΓN and north of ΓE . The question therefore arises, what

are the appropriate boundary conditions for the auxiliary variables at these points? This

problem is compounded in the open domain as there are no explicitly defined boundary

conditions for any of the boundaries of the auxiliary variables.

2. Use of Sommerfeld Radiation Boundary Conditions for Auxiliary Vari-
able Boundary Conditions

For this analysis, we suggest that the desired behavior of the boundary data on

the auxiliary variables at these corners should minimize auxiliary variable reflection back

into the computational (boundary) domain. In other words, the auxiliary variables should

themselves be non-reflecting. Ultimately, we would like these boundary conditions to be

easily implementable while still maintaining the true essence of the auxiliary variables.

To implement this behavior, we consider a simple order J = 1 G-N NRBC (Sommerfeld

condition) for the intersection points of two NRBCs, i.e.,

φ′j(xE, yN) = − 1

c0,y

φ̇j(xE, yN) for ΓE (VI.7)

φ′j(xE, yN) = − 1

c0,x

φ̇j(xE, yN) for ΓN (VI.8)
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Here, c0,y and c0,x are the y and x components of the radial wave velocity and prime indi-

cates the tangential derivative along the particular boundary, i.e., φ′j =
∂φj
∂y

along ΓE and

φ′j =
∂φj
∂x

along ΓN . We now recall the auxiliary form of the boundary condition for the φj

terms on ΓE

αj

∫
ΓE

ζiφ̈j−1 dΓE+κj

∫
ΓE

ζiφ̇
′
j−1 dΓE − λy

∫
ΓE

ζiφ
′′
j−1 dΓE + βj

∫
ΓE

ζiφ̇j dΓE

−γ
∫

ΓE

ζiφ
′
j dΓE − f 2

∫
ΓE

ζiφj−1 dΓE = λx

∫
ΓE

ζiφj+1 dΓE.

To ensure that the auxiliary form lies in H1 (ΓE), we integrate the second order in space

term by parts to yield

αj

∫
ΓE

ζiφ̈j−1 dΓE+κj

∫
ΓE

ζiφ̇
′
j−1 dΓE + λy

∫
ΓE

ζ ′iφ
′
j−1 dΓE − λyζiφ′j

∣∣∣yN
yS

+ βj

∫
ΓE

ζiφ̇j dΓE

−γ
∫

ΓE

ζiφ
′
j dΓE − f 2

∫
ΓE

ζiφj−1 dΓE = λx

∫
ΓE

ζiφj+1 dΓE

We now see that the boundary term contains φ′j evaluated at the northern boundary. To

implement the non-reflecting behavior, we make the substitution (VI.7) into the boundary

term. The complete weak boundary form (for ΓE) then takes the form

αj

∫
ΓE

ζiφ̈j−1 dΓE+κj

∫
ΓE

ζiφ̇
′
j−1 dΓE + λy

∫
ΓE

ζ ′iφ
′
j−1 dΓE + λy

1

c0,y

ζiφ̇j−1 + βj

∫
ΓE

ζiφ̇j dΓE

−γ
∫

ΓE

ζiφ
′
j dΓE − f 2

∫
ΓE

ζiφj−1 dΓE = λx

∫
ΓE

ζiφj+1 dΓE

for j = 1, . . . , J − 1;∀ ζi, φj ∈ VΓE
and φj = 0 at ys. A similar construct is readily

computed for ΓN .

The only thing left to do is consider the problem of “double counting” the contri-

bution at the corner. In other words, there are two values for the auxiliary variables at the

corner; the one resulting from the evaluation of ΓE and the one from ΓN . Which aux-

iliary variable contribution at the corner should be used, that of ΓE or that of ΓN? For

this analysis, we adopt the “node-splitting” approach described by Pozrikidis [44, p. 215],
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which amounts to averaging the corner auxiliary variable values. Of course, this formula-

tion is inherently low order in the boundary treatment of the auxiliary variables. As such,

we would not expect to see spectral convergence as shown in previous examples, however,

there should be improvement over the J = 1 Sommerfeld condition.

3. Corner and Open Domain with Zero Advection Results

Figure 25 shows a series of contour plots showing how the initial disturbance prop-

agates through the domain for 0 ≤ t ≤ 4.5 with zero advection. In this example, we run the

simulation using 4th order basis functions on a 24×24 - element grid (9,409 global points),

using NRBC order J = 4. The simulation is run just long enough for the primary wave

to exit the computational domain. Qualitatively speaking, the results appear to behave as

desired – allowing the wave to propagate through the NRBC unimpeded.
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Figure 25: Time Evolution of quarter plane Gaussian (NRBC on ΓN and ΓE) using 4th

order spectral elements (J = 4) with zero advection.
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Quantitatively, the results confirm that errors are not exponentially decaying as a

function of NRBC order. As the order of the NRBC is increased, the crude approximation

of the corner boundary condition on the auxiliary variables shows its weakness. In fact,

experimentation shows that the boundary condition error quickly overtakes spatial and time

discretization errors. Taking the Gaussian initial condition with tf = 3.0 for various basis

function orders and boundary condition orders yields the L2
Ω errors (using an extended

domain solution as the reference) as shown in Table 2.

Table 2: L2
Ω Error as a function of NRBC Order for quarter plane using various spectral

element orders. Gaussian initial condition and zero advection is used.

NRBC Order L2
Ω Error L2

Ω Error L2
Ω Error

Linear Elements Order 2 Elements Order 4 Elements
J = 1 0.11002 0.10519 0.10470
J = 2 0.07204 0.04173 0.05126
J = 3 0.04067 0.03377 0.03277
J = 4 0.03948 0.02919 0.03274
J = 5 0.03647 0.02579 0.02941
J = 10 0.03446 0.02517 0.02539
J = 20 0.03446 0.02513 0.02526

Similar experiments were performed for the open plane. G-N boundary conditions

are implemented along all four boundaries and the order 1 Sommerfeld boundary condition

is applied to each auxiliary variable boundary as described in the previous section. Figure

26 shows a series of contour plots showing how the initial disturbance propagates through

the domain for 0 ≤ t ≤ 4.5 with zero advection. In this example, we run the simulation

using 4th order basis functions on a 24 × 24 - element grid (9,409 Global Points), using

NRBC order J = 4. Again, qualitatively speaking, the results appear to behave as desired

– allowing the wave to propagate through the NRBC unimpeded.

Again, taking the Gaussian initial condition with tf = 3.0 for various basis function

and boundary condition orders yields the L2
Ω errors (using an extended domain solution as

the reference) as shown in Table 3. Two main observations can be drawn from these results.

First, the major source of error appears to be with the boundary treatment. While there are
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Figure 26: Time Evolution of open plane Gaussian (NRBC on all boundaries) using 4th

order spectral elements (J = 4) with zero advection.

modest gains made by increasing the spectral element order, once J = 3, the errors for

all spectral element orders are nearly the same. Second, even though the L2
Ω results are

less impressive than the channel experiments for high-order NRBCs, there is significant

improvement from J = 1 (Sommerfeld condition) to higher J – even if the improvement

is far from exponential.

With this said, one may be concerned with the stability and long term behavior

of this NRBC scheme employed in the quarter and open domain planes. Of course, as

t → ∞, one would expect h → 0. To gain a quantitative handle on this, consider the

∞-norm defined as follows:

||h||∞ = max
1≤i≤Np

|hi|

where Np is the number of points in Ω. We choose this norm simply to get an estimate of

how much of the initial disturbance is left in the computational domain after a substantial

amount of time has passed. Using our now standard test case of 4th order spectral elements
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Table 3: L2
Ω Error as a function of NRBC Order for open plane using various spectral

element orders. Gaussian initial condition and zero advection is used.

NRBC Order L2
Ω Error L2

Ω Error L2
Ω Error

Linear Elements Order 2 Elements Order 4 Elements
J = 1 0.23695 0.21538 0.21102
J = 2 0.09145 0.08376 0.04345
J = 3 0.06494 0.04056 0.04144
J = 4 0.06466 0.03880 0.03837
J = 5 0.06454 0.03873 0.03776
J = 10 0.06441 0.03794 0.03767
J = 20 0.06441 0.03794 0.03767

on a 24 × 24 element grid with NRBC order J = 4, when computed for t = 1000 with

J = 10, it was found that ||h||∞ = 1.03× 10−17 for the quarter plane and ||h||∞ = 5.30×

10−19 for the open domain; in both cases, essentially zero throughout the computational

domain. While this is not a rigorous stability analysis, it does experimentally suggest a

stable formulation.

4. Corner and Open Plane Domain with Constant Advection Results

It can be shown (see Appendix H for details) that when working in the open plane, to

examine the behavior of the KGE under constant advective velocities in various directions,

a simple change of coordinate system can recast the problem into a much simpler problem.

The simplified problem is one where advection is in only one direction aligned with the

new coordinate system. This implies that when examining the open plane under advection,

it is sufficient to test only cases where advection is in the x or y direction. The benefits of

this change of coordinate system include reducing the computational overhead, as well as

minimizing various errors due to the more complex formulation if viewed in the original

coordinate system. It should be noted, however, that the formulation discussed in VI.D.3

still results in a stable formulation when diagonal advection is applied to the solution. To

see this, examine Figure 27 where north-east advection is applied and the c0,y and c0,x terms

have been adjusted by advection.
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Figure 27: Time Evolution of open plane Gaussian (NRBC on all boundaries) using 4th

order spectral elements (J = 4) with advection velocities U = 0.1 and V = 0.1.

The corresponding L2
Ω errors are presented for various SE and NRBC orders in

Table 4.

E. EFFECTS OF HIGH-ORDER TIME INTEGRATION

At the outset of this work, it was believed that at some point the improvements real-

ized by increasing the spatial discretization and the order of the NRBC would eventually be

limited by the time integration scheme [52]. To this end, the order of the time integration

scheme was varied to examine the effects of time integration on accuracy of the solution.

As has already been presented, gains made by increasing the order of the NRBC halt for

lower order spectral elements after J = 5. Early experiments showed that even for high

order (order 8 and 16) spectral elements, the gains made by increasing the order of the

NRBC are limited at some point using classical RK-4 time integration.
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Table 4: L2
Ω Error as a function of NRBC Order for open plane using various spectral

element orders . Gaussian initial condition with advection velocities U = 0.1 and V = 0.1
used.

NRBC Order L2
Ω Error L2

Ω Error L2
Ω Error

Linear Elements Order 2 Elements Order 4 Elements
J = 1 0.26914 0.26529 0.16998
J = 2 0.09571 0.08642 0.03810
J = 3 0.04391 0.02711 0.02631
J = 4 0.04061 0.02514 0.02467
J = 5 0.04028 0.02413 0.02460
J = 10 0.04021 0.02410 0.02460
J = 20 0.04018 0.02409 0.02460

For this experiment, we consider the KGE on a semi-infinite channel with hΓW
= 0.

To ensure that any boundary or time effects are not masked by the interior discretization,

24th order spectral elements are used on a fine mesh consisting of 4,753 global points. The

Gaussian initial condition is used and is evaluated until t = 4. The reference solution in

this case was computed as described previously, except this time using 24th order spectral

elements on a fine mesh consisting of 9,457 global points. Time integration was performed

with a 10th order Runge-Kutta scheme using a time-step chosen to ensure a Courant number

of 0.1.

As can be observed in Figure 28, gains made by improving the time integration

matter only if combined with high-order treatment of the boundary. Conversely – gains

using high-order treatment of the boundary can only be realized if there is a high-order

treatment of the time integration. It should be noted that these results (error on the order of

10−10) cannot be observed unless high-order treatment of the interior also accompanies the

high-order treatment of the boundary and time. Several experiments were conducted that

varied the order of the interior, boundary and time integration [41, 53]. The clear result

was that without high-order treatment of all components in concert, convergence to the

reference solution is stalled.
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Figure 28: Error in the SE Solution of KGE using NRBCs of various order as a function of
time integration order.

We believe as a practical matter that the order of all components of the numerical

solution (spatial, boundary and time) should be chosen to ensure that the numerical method

is the strongest (in accuracy) component of the model. If high-order treatment of any

of the three components is missing, the high-order treatment of the other components is

essentially wasted. For models where parameters and data have associated measurement

and parameter errors, the numerical method should be chosen to maintain at least the same

accuracy.
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VII. TOWARDS ARBITRARY DOMAINS

In the previous chapters, we examined the G-N boundary formulation using spectral

elements on unstructured quadrilaterals. The physical boundaries, however were perfectly

aligned with the coordinate system axes. This was convenient since it allowed the use of

the G-N auxiliary formulation. The power of spectral elements lies not only in its ability to

compute high-order accurate solutions, but also in its ability to handle complex geometries.

While we demonstrated exponential error convergence in channel experiments when high-

order treatment was applied to spatial, boundary and time components of the problem, this

exponential convergence broke down when applied to boundary configurations where two

NRBCs were adjacent to each other. In short, since there is a discontinuity in the normal at

the intersection of adjacent NRBCs, the corner was the problem.

This chapter considers what happens when we completely remove any corners. We

first examine an arbitrary domain where the boundary can be of any shape. It will be

shown that there are insurmountable complications that arise when using the G-N auxiliary

formulation in this context. In this case, results are presented for various domains using a

first order non-reflecting boundary condition and high-order G-N when certain simplifying

assumptions are made. The chapter concludes by revisiting a boundary condition originally

devised in 1998 for the wave equation by Hagstrom and Hariharan and modified in 2003

by vanJoolen et al. to include dispersion.

A. ARBITRARILY SHAPED BOUNDARIES

Ideally, we would like to directly extend the work presented thus far to remove

the problematic “corner” configuration and replace it with a continuous, smooth, closed

boundary. If this were possible, then a single formulation (instead of four formulations

combined in the open domain) for the boundary would result. The benefits to this type

of boundary would be that the domain could be “fit” to the area of interest, reducing the
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total number of grid points required. A general configuration that demonstrates this idea is

shown in Figure 29.

y

x

D

Figure 29: A general domain Ω truncated by artificial boundary Γ

To begin, we again examine the Higdon boundary condition of order J as first pre-

sented in Chapter III and the KGE as presented in Chapter II simplified by the assumption

of zero advection.

HJ :

[
J∏
j=1

(
∂n +

1

Cj
∂t

)]
h = 0 on Γ

ḧ− c2
0∇2h+ f 2h = 0

We note that the boundary condition and the KGE are described in two different coordinate

systems – namely (n, τ) and (x, y) respectively where n and τ are the normal and tangential

directions on the boundary. If we consider an arbitrary part of the boundary (Γ) as shown

in Figure 30, we can find a way to express the standard Cartesian derivatives in terms of

normal and tangential derivatives.

Of course, in the most general case, the normal and tangential vectors are depen-

dent on the position on the boundary, i.e., ~n = ~n(x, y) and τ̄ = ~τ(x, y). These normal

components can be computed (see Appendix I) for a particular domain by considering a

change of coordinates from (x, y) to (n, τ) as defined by the linear transformation and its
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Figure 30: Components of normal and tangential derivatives

associated differentiation operator: n

τ

 =

 nx ny

−ny nx

 x

y

 and

 ∂n

∂τ

 =

 nx ny

−ny nx

 ∂x

∂y

 . (VII.1)

Since the transformation is necessarily non-singular, this can also be written as: ∂x

∂y

 =
1

n2
x + n2

y

 nx −ny
ny nx

 ∂n

∂τ

 =

 nx −ny
ny nx

 ∂n

∂τ

 (VII.2)

Now, if we expand the Higdon boundary condition, for J = 1, we get

∂nh+
1

C1

ḣ = 0⇒ ~n · ∇h = − 1

C1

ḣ.

This is convenient since this boundary condition can be directly applied to the KGE zero

advection weak integral form

∫
Ω

Ψiḧ dΩ− c2
0

∫
Γ

Ψi~n · ∇h dΓ + c2
0

∫
Ω

∇Ψi · ∇h dΩ + f 2

∫
Ω

Ψih dΩ = 0
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to yield the first order Sommerfeld formulation

∫
Ω

Ψiḧ dΩ +
c2

0

C1

∫
Γ

Ψiḣ dΓ + c2
0

∫
Ω

∇Ψi · ∇h dΩ + f 2

∫
Ω

Ψih dΩ = 0. (VII.3)

1. Second Order (and Higher) Higdon Boundary Condition

Recall that the Higdon boundary condition is very general. It can be applied to a

variety of wave-type problems and reflection is guaranteed to decrease by simply increasing

the order J . They suffer, however, from an implementation point of view since there are

increasingly high-order spatial and temporal derivatives. Consider a second order Higdon

boundary condition

H2 :

(
∂n +

1

C2

∂t

)(
∂nh+

1

C1

ḣ

)
= 0 on Γ.

When expanded, this boundary condition takes the form

∂nnh+

(
1

C1

+
1

C2

)
∂nḣ+

1

C1C2

ḧ = 0.

Continuing with the expansion to express the boundary condition in terms of the physical

coordinate system, we find that ∂nnh is

∂nnh =
∂

∂n
(∂nh) =

∂

∂n
(~n · ∇h)

=
∂

∂n
(nx∂xh+ ny∂yh) = ~n · ∇ (nx∂xh+ ny∂yh) . (VII.4)

The key point to take away from (VII.4) is that the components of the normal vectors are

themselves functions of x and y. The product rule dictates that we must then compute

the x and y derivatives of the normals in order to yield an “exact” representation of the

higher order Higdon boundary condition. This expansion has two direct consequences that

undermine efficient implementation of the formulation.
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The first is something that has already been addressed, namely that the ability to

implement the model is challenged – especially when dealing with large J . For each order

that the Higdon formulation increases, high-order derivatives appear for h as well as the

components of the normal vector. The second consequence is even more problematic in

that the means to relate the boundary formulation back into the interior formulation has

been lost. In the case of the Sommerfeld condition presented, the boundary condition

and the boundary integral term (following integration by parts of the Laplacian operator)

matched perfectly – thus allowing direct substitution of the boundary condition into the

interior formulation.

2. G-N on the Unstructured Boundary

The G-N formulation was designed to remedy this problem of increasingly high-

order derivatives by recasting them into a system of low order derivatives. If we try this

with the unstructured boundary formulation, a similar auxiliary form to that presented in

Chapter III.C) is obtained

(
∂n +

1

Cj
∂t

)
φj−1 = φj j = 1, . . . , J (VII.5)

where φ0 ≡ h and φJ ≡ 0. Again, the function h satisfies the KGE and φ1 is obtained by

applying the linear (constant coefficient) operator
(
∂n + 1

C1
∂t

)
to h.

Knowing that in the end, we would like to have an auxiliary variable formulation

that contains only tangential and time derivatives (so that the boundary formulation can be

discretized only on the boundary), we must consider the equation that φj satisfies. It can be

shown that when the KGE on the boundary is recast in terms of the normal and tangential

coordinate system that it becomes a variable coefficient differential equation due to the

presence of the normal components nx(x, y), ny(x, y). The result of this is that there is

no general KGE-like equation that all φj’s will satisfy. In fact, every time we increase the

order of the boundary condition, additional terms such as those encountered in (VII.4) are

accumulated. In the end, a separate formulation that contains high-order derivatives will
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have to be devised for each auxiliary variable introduced. In short, this implies that the

G-N auxiliary variable formulation in its current form is incompatible with an unstructured

boundary.

To handle this incompatibility, we consider a simplifying assumption that the curva-

ture on the boundary is small. This replicates the case where in a local region, the boundary

“looks” like a straight line to the numerical solution. This assumption allows for all deriva-

tives of normal components to be neglected, i.e.,

∂

∂x
(nx) =

∂

∂x
(ny) =

∂

∂y
(nx) =

∂

∂y
(ny) = 0.

The details of this boundary formulation and how it is integrated into the interior scheme

are discussed in Appendix I.

B. RESULTS FOR ADJUSTED G-N NRBCS ON ARBITRARY DOMAINS

Some experiments were performed using the (what turned out to be) convergence

limiting assumption of small curvature. While experiments showed stable behavior for the

zero advection case, even over long term time integrations, the convergence was again, far

from exponential in nature. For the first set of experiments, we consider how the formula-

tion outlined in (VII.3) performs for various boundary shapes. Admittedly, this formulation

is only a first order boundary condition, however as has already been shown, a first order

condition is very easy to implement and has very modest computational overhead. The

next set of experiments considers the adjusted G-N formulation. For these experiments,

we consider rectangular, circular, and rounded rectangular boundaries where the Gaussian

initial condition is used to generate the propagating waves.

Figure 31 shows a series of contour plots for the zero advection case using 4th order

spectral elements with J = 1 and J = 4. Model parameters are set to the standard test

case where c2
0 = 1, f 2 = 0.5 and initial data as described in (VI.2) is used to generate the

waves in the solution. To see the effect of the boundary condition, we compare our solution
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to one computed on a larger domain, i.e., x, y ∈ [−4, 4] where a homogeneous Dirichlet

boundary condition h = 0 is prescribed for Γ, replacing the NRBC. For this experiment,

the discretization is chosen to maintain a mesh of 28,033 grid points for each polynomial

order. Time integration is performed with RK-8 to ensure the time discretization is not a

limiting factor in computing the reference solution. We then solve the extended domain

solution for t = 3, ensuring that the disturbance has time to propagate through the artificial

boundary, yet has not had time to reach the boundary. The number of elements in each of

the NRBC solutions is adjusted to ensure approximately 3, 000 global points were used.

What is clear from these plots is that there are trade-offs between accurately rep-

resenting the G-N NRBC and removing the problematic corners. Specifically, the square

domain does not have to make an approximation for small curvature. In fact, with the

exception of only 4 points (corners) in the global domain, the G-N NRBC is perfectly rep-

resented by the arbitrary domain formulation. This is why there is significant improvement

between the J = 1 and J = 4 cases. The rounded square and circular domains see less

dramatic improvement as J is increased. While the problematic corners are removed in

these cases, the small curvature assumption induces error in the G-N NRBC, thus imposing

a convergence bound that cannot be overcome by simply increasing the order of the NRBC.

A series of experiments was conducted to examine the normalized L2
Ω error as a

function of spectral element and NRBC order for each of the NRBC boundary configu-

rations. What is clear from the results shown in Tables 5–7 is that the errors are more a

function of the NRBC than of the spectral element order. In short, there is almost no gain

observed by using high-order spectral elements since much of the error is generated by the

NRBC. When compared with the results shown in Chapter VI.D.3, which used the Som-

merfeld approximation for the boundary condition of the auxiliary variables, the results are

unimproved.
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(f) NRBC J = 4
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(g) NRBC J = 4
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(h) NRBC J = 4

Figure 31: Open Domain, 4th order spectral elements using Gaussian initial condition with
zero advection. Top Plots: Contour plots of reference solution solved on extended domain.
Full and truncated domains shown for comparison. Center Plots: Contour plots of various
NRBC boundary configurations using J = 1. Bottom Plots: Contour plots of various
NRBC boundary configurations using J = 4
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Table 5: L2
Ω Error as a function of NRBC Order for open plane arbitrary domain formu-

lation using various spectral element orders on square NRBC domain. Gaussian initial
condition and zero advection is used.

NRBC Order L2
Ω Error L2

Ω Error L2
Ω Error

Linear Elements Order 2 Elements Order 4 Elements
J = 1 0.13632 0.13475 0.13561
J = 2 0.09030 0.07383 0.07164
J = 3 0.04483 0.04403 0.04293
J = 4 0.03996 0.03993 0.03841
J = 5 0.03964 0.03984 0.03841
J = 10 0.03948 0.03957 0.03841
J = 20 0.03948 0.03952 0.03840

Table 6: L2
Ω Error as a function of NRBC Order for open plane arbitrary domain formula-

tion using various spectral element orders on rounded square NRBC domain. Gaussian
initial condition and zero advection is used.

NRBC Order L2
Ω Error L2

Ω Error L2
Ω Error

Linear Elements Order 2 Elements Order 4 Elements
J = 1 0.19805 0.17845 0.17331
J = 2 0.08245 0.07027 0.06646
J = 3 0.05528 0.04839 0.04458
J = 4 0.05246 0.04599 0.04358
J = 5 0.05194 0.04547 0.04234
J = 10 0.05187 0.04540 0.04203
J = 20 0.05186 0.04540 0.04201

C. ALTERNATIVES

Thus far, using the arbitrary boundary idea to remove the problematic corner points,

we have not been able to improve results for the open domain problem. While the arbitrary

boundary formulation does allow the user to choose a boundary domain of any shape (an

advantage in certain contexts), the errors associated with this formulation were on par with

alternatives presented in Chapter VI.D. Additionally, neither formulation led to exponential

error convergence as the order of the NRBC was increased. With this in mind, we consider

an alternative boundary formulation for a circular domain. Hagstrom and Hariharan [6]
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Table 7: L2
Ω Error as a function of NRBC Order for open plane arbitrary domain formu-

lation using various spectral element orders on circular NRBC domain. Gaussian initial
condition and zero advection is used.

NRBC Order L2
Ω Error L2

Ω Error L2
Ω Error

Linear Elements Order 2 Elements Order 4 Elements
J = 1 0.26723 0.26615 0.25028
J = 2 0.10844 0.10334 0.09448
J = 3 0.07584 0.07211 0.06451
J = 4 0.07150 0.06788 0.06206
J = 5 0.07078 0.06730 0.06151
J = 10 0.07070 0.06720 0.06142
J = 20 0.07070 0.06711 0.06142

devised high-order NRBCs for the standard time-dependent two-dimensional wave equa-

tion in polar coordinates implemented in a finite difference setting. This NRBC follows

the ideas pioneered by Bayliss and Turkel [1] with the exception that the NRBC condition

does not involve any high-order derivatives after introducing auxiliary variables. Huan and

Thompson implemented the same NRBC in a series of papers [54, 55, 56, 57, 58, 59] in

a finite element setting. Here, we examine the effect of this work when examined with

high-order spectral elements and time integration.

1. Hagstrom Hariharan Polar Boundary Conditions

The boundary condition devised by Hagstrom and Hariharan (hereafter referred as

the HH formulation) provides a systematic approach for constructing boundary conditions

for standard two-dimensional wave equation. The condition is based on the asymptotic

series representation (which does not converge at any fixed radius) for an outgoing solution

of the wave equation (in polar coordinates)

1

c2
0

∂2h

∂t2
=
∂2h

∂r2
+

1

r

∂h

∂r
+

1

r2

∂2h

∂θ2
. (VII.6)

Since the boundary condition is asymptotic by nature, valid for large radial distances – this

implies that larger radial distances should provide better NRBC convergence. Thompson
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et al. make the observation that “. . . for practical problems, truncating the asymptotic ex-

pansion after [J] terms provides solutions with errors well below that of the discretization

error” [59]. Here, we seek to significantly reduce the discretization error by employing

spectral elements to find the true error convergence properties of the NRBC. In developing

the boundary condition, Hagstrom and Hariharan construct a sequence of operators that

approximately annihilate the residual of the preceding element in the sequence, viewed as

a function on the artificial boundary. The sequence begins with a first-order Bayliss-Turkel

operator discussed in [1]. The boundary condition takes the form:

∂h

∂r
= φ1 −

1

c0

∂h

∂t
− 1

2r
h, (VII.7)

φj+1 =
1

c0

∂φj
∂t

+
j

r
φj −

(j − 1
2
)2

4r2
φj−1 −

1

4r2

∂2φj−1

∂θ2
, j = 1, . . . , J − 1 (VII.8)

where

φ0 ≡ 2h and φJ ≡ 0.

At first glance, this boundary formulation suggests that we should develop a “new”

spectral element formulation for the wave equation cast in polar coordinates. If we did this,

however, we would then require a polar grid that would introduce additional complications

such as the method of dealing with the degenerate quadrilaterals that inevitably occur at

the center of the grid. Of course there are ways to overcome these obstacles, but it would

be much more convenient to cast the problem in the same framework already developed.

In other words, we seek to implement this boundary condition (presented in polar form) in

our unstructured quadrilateral formulation of the wave equation (in Cartesian form).

First, consider the two-dimensional wave equation (same formulation as presented

in (II.29) with U = V = f = 0)

∂2h

∂t2
− c2

0∇2h = 0. (VII.9)
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Multiplying by the test functions Ψi and integrating over the circular domain yields the

weak integral form ∫
Ω

Ψi
∂2h

∂t2
dΩ− c2

0

∫
Ω

Ψi∇2h dΩ = 0

Transferring the second order spatial derivatives from h to the basis functions via integra-

tion by parts and applying the divergence theorem to recast one surface integral term as a

boundary integral gives us

∫
Ω

Ψi
∂2h

∂t2
dΩ− c2

0

∫
Γ

Ψi~n · ∇h dΩ + c2
0

∫
Ω

∇Ψi · ∇h dΩ = 0. (VII.10)

Of note now is that the boundary condition (VII.7) contains a radial derivatives of h that on

the circle is precisely the normal derivative ~n · ∇h. This allows direct implementation of

the boundary condition into (VII.10) as follows:

∫
Ω

Ψi
∂2h

∂t2
dΩ− c2

0

∫
Γ

Ψi

(
φ1 −

1

c0

∂h

∂t
− 1

2r
h

)
dΩ + c2

0

∫
Ω

∇Ψi · ∇h dΩ = 0. (VII.11)

Here, since on the boundary the radius is fixed, the 1
2r

term may be treated as a constant.

A similar weak form is constructed for the boundary formulation by multiplying

(VII.8) by the test functions ζi and integrating over Γ yielding (after by integration by

parts):

1

c0

∫
Γ

ζi
∂φj
∂t

dΓ +
j

r

∫
Γ

ζiφj dΓ−
(
j − 1

2

)2

4r2

∫
Γ

ζiφj−1 dΓ

− 1

4r2
ζi
∂φj−1

∂θ

∣∣∣end
start

+
1

4r2

∫
Γ

∂ζi
∂θ

∂φj−1

∂θ
dΓ =

∫
Γ

ζiφj+1 dΓ.

(VII.12)

We now use the fact that the boundary is continuous and closed to surmise that the endpoint

evaluation term vanishes. The formal problem statement is then: Find h ∈ V and φj ∈ VΓ

where j = 1, . . . J − 1, such that Equations (VII.11) and (VII.12) are satisfied ∀ Ψi ∈ V

and ζi ∈ VΓ.
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2. Results for the HH Formulation

A series of experiments was conducted to determine the effect of the HH boundary

condition for various SE and NRBC orders. Since the formulation is designed for circular

boundaries, we consider only circular boundaries with unstructured grids. In each case, we

choose the number of elements to yield approximately 3, 000 global points. Since the Gaus-

sian initial condition described in (VI.2) is perfectly symmetric with respect to the bound-

ary, we introduce asymmetry by adjusting its shape to yield a smooth, two-dimensional

“oval-shaped” initial condition with shape parameters σx = 1
2
, σy = 1

3
, further rotated by

an angle of θ = π
6
. The initial condition used here is:

h(x, y, 0) = e−(ax2+2bxy+cy2), ḣ(x, y, 0) = 0. (VII.13)

Here, the parameters a, b, and c are defined as follows:

a =
cos2 θ

2σ2
x

+
sin2 θ

2σ2
y

b = −sin 2θ

4σ2
x

+
sin 2θ

4σ2
y

c =
sin2 θ

2σ2
x

+
cos2 θ

2σ2
y

. (VII.14)

Again, the solution is compared to one computed on a larger domain allowing the wave

to propagate out of the NRBC domain but not yet impinge on the non-physical boundary

used to compute the solution on the larger domain. Qualitative results are shown in Figure

32 and quantitative L2
Ω errors are shown for various NRBC orders for SE orders up to 6 in

Table 8. No further improvement was observed for SE orders above order 6.

3. Adjustments to HH to Include Mild Dispersion

The unstructured grid representation of the HH formulation has been demonstrated

to significantly reduce reflection caused by the boundary for the standard wave equation.

The question now arises, can this formulation be extended to include dispersive effects such

as Coriolis? In [60], van Joolen et al. presented a method to extend the HH formulation

for the standard wave equation under mild dispersion. While this formulation was well

grounded mathematically, as far as the author knows, it was never implemented. A brief
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(c) Ref. Solution (t = 3)
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(d) NRBC J = 4 (t = 1)
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(e) NRBC J = 4 (t = 2)
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(f) NRBC J = 4 (t = 3)

Figure 32: Open Domain, 4th order spectral elements (J = 4) using oblique Gaussian
initial condition shown for t = 1, 2, 3. Top Plots: Contour plots of reference solution
solved on extended domain. Superimposed black circle indicates NRBC domain. Bottom
Plots: Contour plots of various NRBC boundary configurations using J = 4.

synopsis of their derivation follows with results presented for mild dispersion where f 2 =

0.1.

We first consider the KGE without advection (in polar coordinates as in the HH

derivation):
1

c2
0

∂2h

∂t2
=
∂2h

∂r2
+

1

r

∂h

∂r
+

1

r2

∂2h

∂θ2
− f 2

c2
0

h. (VII.15)

As has been previously discussed, in the geophysical context, the dispersion parameter is

typically small. We assume here that

f

c0K
� 1, (VII.16)
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Table 8: L2
Ω Error as a function of NRBC Order for Hagstrom Hariharan NRBC formulation

using various spectral element orders on the circular NRBC domain. Oblique Gaussian
initial condition is used.

NRBC Order L2
Ω Error L2

Ω Error L2
Ω Error L2

Ω Error
Linear Elements Order 2 Elements Order 4 Elements Order 6 Elements

J = 1 0.09310 0.04772 0.04555 0.04485
J = 2 0.03381 0.00465 0.00355 0.00315
J = 3 0.02355 0.00324 0.00243 0.00259
J = 4 0.02217 0.00305 0.00236 0.00201
J = 5 0.02198 0.00302 0.00230 0.00196
J = 10 0.02195 0.00302 0.00228 0.00196
J = 20 0.02195 0.00302 0.00228 0.00196

where K is a typical wave number appearing in the solution. Now, apply the Fourier

transform to (VII.6) and (VII.15) in time to yield:

ω2

c2
0

ĥ+
∂2ĥ

∂r2
+

1

r

∂ĥ

∂r
+

1

r2

∂2ĥ

∂θ2
= 0 Wave(

ω2

c2
0

− f 2

c2
0

)
ĥ+

∂2ĥ

∂r2
+

1

r

∂ĥ

∂r
+

1

r2

∂2ĥ

∂θ2
= 0 Klein-Gordon

where ω is the frequency and ĥ is the frequency domain representation of h. In both cases,

we obtain the Helmholtz equation:

K̄2ĥ+
∂2ĥ

∂r2
+

1

r

∂ĥ

∂r
+

1

r2

∂2ĥ

∂θ2
= 0.

In the non-dispersive case, K̄ = ω
c0
≡ K and K̄ =

√
K2 − f2

c20
in the dispersive case. In

order to facilitate the conversion back to the time domain, we now consider a Taylor series

approximation to the square root term found in the dispersive case, i.e.,

√
1− x = 1− 1

2
x+O(x2).
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Provided that x is small, we can truncate the O(x2) terms. In our case, from (VII.16) we

can reasonably make this assumption yielding for the dispersive case:

K̄

K
=

√
1− f 2

c2
0K

2
≈ 1− f 2

2c2
0K

2
⇒ K̄ ≈ K − f 2

2c2
0K

.

We now see that in the frequency domain, an equation valid in the non-dispersive case is

valid in the dispersive case if we make the replacement:

K →

√
K2 − f 2

c2
0

≈ K − f 2

2c2
0K

. (VII.17)

We now turn our attention to the boundary condition (VII.7) and (VII.8) that we Fourier

transform in time to yield:

−iKĥ+
∂ĥ

∂r
+

1

2r
ĥ = φ̂1 (VII.18)

−iKφ̂j +
j

r
φ̂j −

(
j − 1

2

)2

4r2
φ̂j−1 −

1

4r2

∂2φ̂j−1

∂θ2
= φ̂j+1, j = 1, . . . , J − 1. (VII.19)

Making the substitution (VII.17), we obtain the dispersive version of the HH formulation

in the frequency domain, i.e.,

−iKĥ+
if 2

2c2
0K

ĥ+
∂ĥ

∂r
+

1

2r
ĥ = φ̂1

−iKφ̂j +
if 2

2c2
0K

φ̂j +
j

r
φ̂j −

(
j − 1

2

)2

4r2
φ̂j−1 −

1

4r2

∂2φ̂j−1

∂θ2
= φ̂j+1, j = 1, . . . , J − 1.
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Transforming these equations back into the time domain results in the final HH

boundary formulation for the KGE:

1

c0

∂h

∂t
+
f 2

2c0

∫ t

0

h(τ) dτ︸ ︷︷ ︸
m(t)

+
∂h

∂r
+

1

2r
h = φ1 (VII.20)

1

c0

∂φj
∂t

+
f 2

2c0

∫ t

0

φj(τ) dτ︸ ︷︷ ︸
n(t)

+
j

r
φj −

(
j − 1

2

)2

4r2
φj−1 −

1

4r2

∂2φj−1

∂θ2
= φj+1 (VII.21)

where

j = 1, . . . , J − 1, φ0 ≡ 2h and φJ ≡ 0.

It should be noted that van Joolen et al. [60] show how m(t) and n(t) can be calculated

in each time-step to keep the boundary condition local in time without having to store and

operate on the history of the solution. For this analysis, a simple trapezoidal approximation

was used to approximate the integral.

The weak form of the formulation is now constructed. We consider the KGE in its

general form:
∂2h

∂t2
− c2

0∇2h+ f 2h = 0.

Multiplying by the test functions Ψi and integrating over the circular domain yields the

weak integral form

∫
Ω

Ψi
∂2h

∂t2
dΩ− c2

0

∫
Ω

Ψi∇2h dΩ + f 2

∫
Ω

Ψih dΩ = 0.

Transferring the second order spatial derivatives from h to the basis functions via integra-

tion by parts and applying the divergence theorem to recast one surface integral term as a

boundary integral gives us

∫
Ω

Ψi
∂2h

∂t2
dΩ− c2

0

∫
Γ

Ψi~n · ∇h dΩ + c2
0

∫
Ω

∇Ψi · ∇h dΩ + f 2

∫
Ω

Ψih dΩ = 0. (VII.22)
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Of note now is that the boundary condition (VII.20) contains a radial derivatives of h that

on the circle is precisely the normal derivative ~n · ∇h. This allows direct implementation

of the boundary condition into (VII.22) as follows:

∫
Ω

Ψi
∂2h

∂t2
dΩ− c2

0

∫
Γ

Ψi

(
φ1 −

1

c0

∂h

∂t
− 1

2r
h− f 2

2c0

m(t)

)
dΩ

+c2
0

∫
Ω

∇Ψi · ∇h dΩ + f 2

∫
Ω

Ψih dΩ = 0.

(VII.23)

Here, since on the boundary the radius is fixed, the 1
2r

term may be treated as a constant.

A similar weak form is constructed for the boundary formulation by multiplying

(VII.21) by the test functions ζi and integrating over Γ yielding (after by integration by

parts):

1

c0

∫
Γ

ζi
∂φj
∂t

dΓ +
f 2

2c0

∫
Γ

ζi n(t) dΓ +
j

r

∫
Γ

ζiφj dΓ−
(
j − 1

2

)2

4r2

∫
Γ

ζiφj−1 dΓ

− 1

4r2
ζi
∂φj−1

∂θ

∣∣∣end
start

+
1

4r2

∫
Γ

∂ζi
∂θ

∂φj−1

∂θ
dΓ =

∫
Γ

ζiφj+1 dΓ.

(VII.24)

We now use the fact that the boundary is continuous and closed to surmise that the endpoint

evaluation term vanishes. The formal problem statement is then: Find h ∈ V and φj ∈ VΓ

where j = 1, . . . J − 1, such that Equations (VII.23) and (VII.24) are satisfied ∀ Ψi ∈ V

and ζi ∈ VΓ.

4. Results for HH with Dispersion

A series of experiments was conducted to determine the effect of the HH boundary

condition extended to include mild dispersion for various SE and NRBC orders. The set-up

is identical to the experiments without dispersion, except the dispersion parameter is set to

f 2 = 0.1. Qualitative results are shown in Figure 33 and quantitative L2
Ω errors are shown

for various NRBC orders for SE orders up to 6 in Table 9. As in the non-dispersive case,

no improvement was observed for SE orders above order 6.
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(a) Ref. Solution (t = 1)
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(b) Ref. Solution (t = 2)
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(c) Ref. Solution (t = 3)
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(d) NRBC J = 4 (t = 1)
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(e) NRBC J = 4 (t = 2)
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(f) NRBC J = 4 (t = 3)

Figure 33: Open Domain, 4th order spectral elements (J = 4) using oblique Gaussian
initial condition shown for t = 1, 2, 3 under dispersion f 2 = 0.1. Top Plots: Contour plots
of reference solution solved on extended domain. Superimposed black circle indicates
NRBC domain. Bottom Plots: Contour plots of various NRBC boundary configurations
using J = 4.
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Table 9: L2
Ω Error as a function of NRBC Order for Hagstrom Hariharan NRBC formulation

using various spectral element orders on the circular NRBC domain. Oblique Gaussian
initial condition is used with dispersion parameter set to f 2 = 0.1.

NRBC Order L2
Ω Error L2

Ω Error L2
Ω Error L2

Ω Error
Linear Elements Order 2 Elements Order 4 Elements Order 6 Elements

J = 1 0.07290 0.03555 0.03369 0.03293
J = 2 0.02684 0.00371 0.00283 0.00248
J = 3 0.01869 0.00258 0.00192 0.00204
J = 4 0.01759 0.00243 0.00186 0.00157
J = 5 0.01744 0.00240 0.00181 0.00154
J = 10 0.01742 0.00240 0.00180 0.00153
J = 20 0.01742 0.00240 0.00180 0.00153
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VIII. CONCLUSIONS AND AREAS FOR FUTURE RESEARCH

In this dissertation, we considered a reduced form of the shallow water equations in

various (semi-infinite and infinite channels as well as open domain) configurations. Using

the Givoli-Neta auxiliary variable formulation of the Higdon non-reflecting boundary con-

ditions, we truncated the original infinite domain and developed the boundary conditions

specific to the problem at hand. Using a high-order approach to the spatial discretization

(spectral elements), time integration (high-order Runge-Kutta) in concert with high-order

boundary treatment, we showed exponential convergence to the reference solution in chan-

nel configurations. These results suggest a balanced approach to dealing with truncation

errors – namely, to make improvements in all components of the problem to see improved

accuracy.

In open domain problems, we considered various ways to handle corner compatibil-

ity concerns when using the Givoli-Neta auxiliary variable formulation. Using a physical

argument that the auxiliary variables themselves should be non-reflecting at a boundary,

we formulated a spectral element formulation that yielded stable solutions (even for long

term time integrations) using first order NRBCs for the auxiliary variables. This formula-

tion showed significant improvement from the first order (J = 1 Sommerfeld condition)

to higher order J , although the improvement was far from exponential. Besides the low

order method of handling the auxiliary variable boundaries, the “node-splitting” method of

handling double-counting corner nodes turned out to be convergence limiting.

Recognizing that any formulation that included corners would be problematic, we

sought a boundary condition that would be valid for an arbitrarily shaped domain. The

Givoli-Neta formulation was shown to have insurmountable implementation issues without

the simplifying assumption of small curvature on the boundary. When the small curvature

assumption was made, the formulation was shown to have stable, improved results from

the first order (J = 1) Sommerfeld condition. It was clear, however, that there are trade-

offs associated between accurately representing the Givoli-Neta formulation and removing
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the problematic corners. Specifically, using a square domain (where the small curvature

assumption affects only the four corner points) errors were shown to be improved over

alternative domains (rounded square and circle).

The final experiments conducted considered a boundary condition originally de-

vised by Hagstrom and Hariharan and extended to the dispersive wave equation by van

Joolen et al. This boundary condition is based on the asymptotic series representation

of the wave equation in polar coordinates, valid for large radial distances. Results were

improved over the alternative arbitrary domain formulations although valid only for large

radial distances and restricted to circular boundary domains in this analysis.

This research has demonstrated exponential convergence in channel experiments,

only hypothesized in previous low-order settings. Additionally, it has developed several

alternatives to handling open domains which improve performance to first-order NRBC

schemes at a very moderate computational cost. What remains is to extend this high-order

numerical formulation to more complex linear and non-linear systems of fluid motion such

as the Euler equations. Additionally, better alternatives to dealing with corner compatibility

concerns remains an open problem.
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APPENDIX A. DEPTH INTEGRATING THE CONTINUITY
EQUATION

In order to arrive at the final form of the shallow water equations, we depth inte-

grated our shallow water continuity equation. The details follow. Given

0 = ∇ · u

we integrate in z

0 =

∫ h

−hB
∇ · udz

=

∫ h

−hB

(
∂u

∂x
+
∂v

∂y

)
dz + w|z=h − w|z=−hB (A.1)

Since both h and hB depend on x and y (and t for h), we apply the Leibniz integral rule,

which allows us to write:

∂

∂x

∫ z=h

z=−hB
udz =

∫ z=h

z=−hB

∂u

∂x
dz + u

∣∣∣
h

∂h

∂x
− u
∣∣∣
hB

∂ (−hB)

∂x

∂

∂y

∫ z=h

z=−hB
vdz =

∫ z=h

z=−hB

∂v

∂x
dz + v

∣∣∣
h

∂h

∂x
− v
∣∣∣
hB

∂ (−hB)

∂x
.

Substituting these into (A.1) we have

0 =
∂

∂x

∫ h

−hB
udz −

(
u
∣∣∣
z=h

∂h

∂x
− u
∣∣∣
z=−hB

∂ (−hB)

∂x

)
+

∂

∂y

∫ h

−hB
vdz −

(
v
∣∣∣
z=h

∂h

∂y
− v
∣∣∣
z=−hB

∂ (−hB)

∂y

)
+ w

∣∣∣
z=h
− w

∣∣∣
z=−hB

.
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Now, using the appropriate boundary conditions

w(x, y,−hB) = −u∂hB
∂x
− v∂hB

∂y

w(x, y, h, t) =
∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y

we substitute to find

0 =
∂

∂x

∫ h

−hB
udz +

∂

∂y

∫ h

−hB
vdz −u

∣∣∣
z=h

∂h

∂x
− v
∣∣∣
z=h

∂h

∂y
− u
∣∣∣
z=−hB

∂hB
∂x
− v
∣∣∣
z=−hB

∂hB
∂y

+
∂h

∂t
+u
∣∣∣
z=h

∂h

∂x
+ v
∣∣∣
z=h

∂h

∂y
+ u
∣∣∣
z=−hB

∂hB
∂x

+ v
∣∣∣
z=−hB

∂hB
∂y

.

Which simplifies to
∂h

∂t
+

∂

∂x

∫ h

−hB
udz +

∂

∂y

∫ h

−hB
vdz.

The construction of the shallow water model as shown in Figure 3 has H = h+ hB where

H is the depth of the fluid. Since a previous argument showed that u and v are independent

of depth, we are left with our final, depth integrated continuity equation

∂h

∂t
+

∂

∂x
(Hu) +

∂

∂y
(Hv) = 0
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APPENDIX B. LINEARIZING THE SHALLOW WATER
EQUATIONS

The non-linear version of the shallow water equations are:

∂tu+ u∂xu+ v∂yu− fv = −g ∂xh

∂tv + u∂xv + v∂yv + fu = −g ∂yh

∂th+ ∂x (Hu) + ∂y (Hv) = 0.

We wish to find a linear version of these equations. Suppose the bottom topography is flat

such that hB is constant and u and v can be described by a constant mean term and a small

O(δ) deviation from that value, i.e.,

u = U + u∗ v = V + v∗ H = hB + h

To be clear, U and V are the mean velocities and hB is the mean water depth. We now

make these perturbation substitutions.

∂t(U + u∗) + (U + u∗)∂x(U + u∗) + (V + v∗)∂y(U + u∗)− f(V + v∗) = −g ∂xh

∂t(V + v∗) + (U + u∗)∂x(V + v∗) + (V + v∗)∂y(V + v∗) + f(U + u∗) = −g ∂yh

∂th+ ∂x ((hB + h) (U + u∗)) + ∂y ((hB + h) (V + v∗)) = 0.

Now, recalling that U, V and hB are constants, we simplify to find:

∂tu
∗ + (U + u∗)∂xu

∗ + (V + v∗)∂yu
∗ − f(V + v∗) = −g ∂xh

∂tv
∗ + (U + u∗)∂xv

∗ + (V + v∗)∂yv
∗ + f(U + u∗) = −g ∂yh

∂th+ hB (∂xu
∗ + ∂yv

∗) + ∂xh (U + u∗) + ∂yh (V + v∗) + h (∂xu
∗ + ∂yv

∗) = 0.
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If we expand each term, the result is:

∂tu
∗ + U∂xu

∗ + u∗∂xu
∗ + V ∂yu

∗ + v∗∂yu
∗ − f(V + v∗) = −g ∂xh

∂tv
∗ + U∂xv

∗ + u∗∂xv
∗ + V ∂yv

∗ + v∗∂yv
∗ + f(U + u∗) = −g ∂yh

∂th+ hB∂xu
∗ + hB∂yv

∗ + U∂xh+ u∗∂xh+ V ∂yh+ v∗∂yh+ h∂xu
∗ + h∂yv

∗ = 0.

We now neglect any terms of O(δ2) to arrive at our final form of the linearized shallow

water equations:

∂tu
∗ + U∂xu

∗ + V ∂yu
∗ − f(V + v∗) = −g ∂xh

∂tv
∗ + U∂xv

∗ + V ∂yv
∗ + f(U + u∗) = −g ∂yh

∂th+ U∂xh+ V ∂yh+ hB (∂xu
∗ + ∂yv

∗) = 0.
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APPENDIX C. ADJUSTING HIGDON’S CONDITION FOR
ADVECTION

Suppose that we have a wave that moves according to

(∂t + U∂x)
2 h− c2

0∂
2
xh = 0. (C.1)

This equation can be “factored” as follows:

0 =
(
∂t + (U − c0) ∂x

)(
∂t + (U + c0) ∂x

)
h

Following a standard method of characteristics derivation, we define functions w and v as

w(x, t) = ∂th+ (U − c0)∂xh

v(x, t) = ∂th+ (U + c0)∂xh.

It can be verified that both

∂tw + (U − c0) ∂xw = 0

∂tv + (U + c0) ∂xv = 0

satisfy (C.1) exactly. If we then solve w along its characteristic x = (U − c0) t + x0 and

v along its characteristic x = (U + c0) t + x0, with initial data w(x0, 0) = P (x0) and

v(x0, 0) = Q(x0), then the solutions for w and v are respectively

w(x, t) = P
(
x− (U − c0)t

)
= ∂th+ (U − c0)∂xh (C.2)

v(x, t) = Q
(
x− (U + c0)t

)
= ∂th+ (U + c0)∂xh (C.3)

107



We subtract (C.3) from (C.2) to find

P
(
x− (U − c0)t

)
= ∂th+ (U + c0)∂xh

− Q
(
x− (U + c0)t

)
= ∂th+ (U − c0)∂xh

P
(
x− (U − c0)t

)
−Q

(
x− (U + c0)t

)
= 2c0∂xh. (C.4)

Further, if we combine (C.2) and (C.3) as

(U − c0)P
(
x− (U − c0)t

)
= (U − c0)

(
∂th+ (U + c0)∂xh

)
− (U + c0)Q

(
x− (U + c0)t

)
= (U + c0)

(
∂th+ (U − c0)∂xh

)
(U − c0)P

(
x− (U − c0)t

)
− (U + c0)Q

(
x− (U + c0)t

)
= −2c0∂th. (C.5)

This implies that the solution takes the form h(x, t) = F
(
x−(U+c0)t

)
+G
(
x−(U−c0)t

)
.

Here, F and G are arbitrary functions of the initial data. To see this, consider

∂th = −(U + c0)F ′
(
x− (U + c0)t

)
− (U − c0)G′

(
x− (U − c0)t

)
(C.6)

∂xh = F ′
(
x− (U + c0)t

)
+G′

(
x− (U − c0)t

)
. (C.7)

Equating coefficients with (C.4) and (C.5) this yields a relation between the initial data and

the functions F and G

P
(
x− (U − c0)t

)
= 2c0G

′
(
x− (U − c0)t

)
(C.8)

Q
(
x− (U + c0)t

)
= −2c0F

′
(
x− (U + c0)t

)
. (C.9)

This solution can be rewritten as

h(x, t) = F
(
x− (c0 + U)t

)
+G

(
x+ (c0 − U)t

)
(C.10)
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with the interpretation that the general solution is the sum of F
(
x− (c0 +U)t

)
, a wave of

fixed shape moving to the right with velocity (c0 + U) and G
(
x + (c0 − U)t

)
a wave of

fixed shape moving to the left with velocity (c0 − U).
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APPENDIX D. NORMAL TO TANGENTIAL DERIVATIVE
TRANSFORMATION FOR EASTERN NRBC

The function h satisfies the dispersive, advective wave equation (II.29) in D. Since

the function φ1 is obtained by applying the linear (constant coefficient) operator
(
∂x + 1

C1
∂t

)
to h, it is can be shown that φ1 should also satisfy the same equation in D9. Further, since

φj is obtained by applying the same linear operator j − 1 times to φ1, the functions φj

should satisfy an equation like (II.29), namely,

(
∂tt +

(
U2 − c2

0

)
∂xx +

(
V 2 − c2

0

)
∂yy+

2U∂xt + 2V ∂yt + 2UV ∂xy + f 2
)
φj = 0 (D.1)

Now, use the following identities:

∂xxφj =

(
∂x −

1

Cj+1

∂t

)(
∂x +

1

Cj+1

∂t

)
φj +

1

C2
j+1

φ̈j (D.2)

∂xtφj = ∂t (∂xφj) (D.3)

∂xyφj = ∂y (∂xφj) (D.4)

and (
∂x +

1

Cj
∂t

)
φj−1 = φj j = 1, . . . , J . (D.5)

9Here we must use the assumption that c0 and f are constants. By applying the differential operator to
(II.29), computing each of the φj derivatives present in (III.17) using the differential operator and simplifying,
a simple induction argument shows that the φj’s must satisfy (III.17)
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Now, if we substitute (D.2) - (D.4) into (D.1), and replace j with j − 1 everywhere

yields, for j = 1, . . . , J

φ̈j−1 +
(
U2 − c2

0

) [(
∂x −

1

Cj
∂t

)(
∂x +

1

Cj
∂t

)
φj−1 +

1

C2
j

φ̈j−1

]
+
(
V 2 − c2

0

)
∂yyφj−1+

2U ∂t (∂xφj−1) + 2V ∂ytφj−1 + 2UV ∂y (∂xφj−1) + f 2φj−1 = 0 (D.6)

From this and (D.5) one gets, for j = 1, . . . , J

φ̈j−1 +
(
U2 − c2

0

) [(
∂x −

1

Cj
∂t

)
φj +

1

C2
j

φ̈j−1

]
+
(
V 2 − c2

0

)
∂yyφj−1+

2U∂t (∂xφj−1) + 2V ∂ytφj−1 + 2UV ∂y (∂xφj−1) + f 2φj−1 = 0 (D.7)

Now, we shift indices on (D.5) and multiply both sides by (U2 − c2
0) as:

(
U2 − c2

0

)(
∂x +

1

Cj+1

∂t

)
φj =

(
U2 − c2

0

)
φj+1 j = 0, . . . , J − 1. (D.8)

Subtract (D.7) from (D.8)

−φ̈j−1 +
(
U2 − c2

0

)( 1

Cj
+

1

Cj+1

)
φ̇j −

(
U2 − c2

0

) 1

C2
j

φ̈j−1 −
(
V 2 − c2

0

)
∂yyφj−1−

2U∂t (∂xφj−1)− 2V ∂ytφj−1 − 2UV ∂y (∂xφj−1)− f 2φj−1 =
(
U2 − c2

0

)
φj+1 (D.9)

Now, consider (D.5). Expanding and solving for ∂xφj−1, we get:

∂xφj−1 = φj −
1

Cj
φ̇j−1 j = 1, . . . , J . (D.10)
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Substitute (D.10) into (D.9)

−φ̈j−1 +
(
U2 − c2

0

)( 1

Cj
+

1

Cj+1

)
φ̇j −

(
U2 − c2

0

) 1

C2
j

φ̈j−1−

(
V 2 − c2

0

)
∂yyφj−1 − 2U∂t

(
φj −

1

Cj
φ̇j−1

)
− 2V ∂ytφj−1− (D.11)

2UV ∂y

(
φj −

1

Cj
φ̇j−1

)
− f 2φj−1 =

(
U2 − c2

0

)
φj+1

Simplify:

(
2U

Cj
− 1− U2 − c2

0

C2
j

)
φ̈j−1 +

(
2UV

Cj
− 2V

)
φ̇′j−1 −

(
V 2 − c2

0

)
φ′′j−1+((

U2 − c2
0

)( 1

Cj
+

1

Cj+1

)
− 2U

)
φ̇j − 2UV φ′j − f 2φj−1 =

(
U2 − c2

0

)
φj+1 (D.12)

for j = 1, . . . , J − 1

In (D.12) and elsewhere, a prime indicates differentiation with respect to y along ΓE , i.e.

the tangential derivative along those boundaries.
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APPENDIX E. METRIC TERMS DERIVATION

To facilitate interpolation and integration required for the SE method, we transform

all terms of the weak integral form in physical space x = (x, y)T to a canonical space ξ =

(ξ, η)T . This nonsingular mapping assumes x = x (ξ, η) and conversely ξ = ξ (x, y).

A. DERIVATION OF METRIC TERMS

Using the chain rule, we find

dx =
∂x

∂ξ
dξ +

∂x

∂η
dη,

which can be written in matrix form dx

dy

 = Je

 dξ

dη

 . (E.1)

Here Je is the transformation Jacobian with associated determinant |Je| defined as

Je =

 ∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

 , |Je| = ∂x

∂ξ

∂y

∂η
− ∂y

∂ξ

∂x

∂η
. (E.2)

Similarly, we can find the inverse transformation

dξ =
∂ξ

∂x
dx+

∂ξ

∂y
dy

and write the derivatives of ξ(x, y) in matrix form as

 dξ

dη

 = Jeξ

 dx

dy

 (E.3)
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where

Jeξ =

 ∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

 (E.4)

is the Jacobian of the inverse transformation. Since the Jacobian described by (E.2) is

non-singular, we can write the transformation described by (E.1) as dξ

dη

 = (Je)−1

 dx

dy

 . (E.5)

Here (Je)−1 is the standard matrix inverse defined by

(Je)−1 =
1

|Je|

 ∂y
∂η
−∂x
∂η

−∂y
∂ξ

∂x
∂ξ

 (E.6)

We now note that the formulations described by (E.3) and (E.5) are identical, therefore,

equating coefficients from the two Jacobian terms (E.4) and (E.6) yields the metric terms

∂ξ

∂x
=

1

|Je|
∂y

∂η
,

∂ξ

∂y
= − 1

|Je|
∂x

∂η
,

∂η

∂x
= − 1

|Je|
∂y

∂ξ
,

∂η

∂y
=

1

|Je|
∂x

∂ξ
. (E.7)

This formulation is convenient since all metric terms are defined in terms of terms that are

readily calculated via basis function expansions of x(ξ, η).

B. CONSEQUENCES OF QUADRILATERAL GRID DEGENERATION

Given the discussion of metric terms, we see that there is a common term in that has

the potential to cause numerical instability – namely 1
|Je| . If the elemental Jacobian tends to

zero, then all metric terms associated with that Jacobian will tend toward infinity. In fact,

if the element Jacobian is small at certain points on the global domain compared with other

locations on the global domain, experiments in this dissertation have shown that they tend

116



to corrupt the entire solution. The question then arises, what element geometries have the

potential to cause numerical instabilities?

Since the global problem is discretized into smaller elements, this question must be

answered in the context of grid generation. There is general agreement in literature [45,

61, 62, 63, 64, 65, 66] concerning quadrilateral grid generation that convex elements with

maximum internal angles ≈ 135◦ constitute a quality mesh. Li et al. in [67] describe pro-

cedures to adjust quadrilateral basis functions to deal with elements that have large interior

angles or, in fact completely degenerate into triangles, although with these adjustments,

computational overhead is increased to deal with alternate canonical geometries. In this

analysis, we seek a quality all quadrilateral mesh.

To demonstrate how a poorly generated mesh can taint a solution, we consider an

extreme example where a quadrilateral element is degenerated into a triangle as shown in

Figure 34. In this case, one of the internal angles of the “quadrilateral” is 180◦.

x

( )1 1,x y ( )2 2,x y

( )3 3,x y

( )4 4,x y

( )1, 1- - ( )1, 1+ -

( )1, 1+ +( )1, 1- +

y

Figure 34: Degenerate quadrilateral mapped to a canonical reference element.
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Now, consider the linear basis function expansion (similar argument for higher or-

der expansions) of the physical coordinates and their derivatives

xN(ξ, η) =
4∑

k=1

ψk (ξ, η)xk

∂xN
∂ξ

(ξ, η) =
4∑

k=1

∂ψk
∂ξ

(ξ, η)xk

where the linear Lagrange basis functions are defined as

ψ1 (ξ, η) =
1

4
(1− ξ) (1− η) , ψ2 (ξ, η) =

1

4
(1 + ξ) (1− η) ,

ψ3 (ξ, η) =
1

4
(1− ξ) (1 + η) , ψ4 (ξ, η) =

1

4
(1 + ξ) (1 + η) .

We consider the degenerate vertex located at (ξ, η) = (1, 1) and compute each term

required for computation of the Jacobian.

∂x

∂ξ
(1, 1) =

1

2
(−x3 + x4) ,

∂x

∂η
(1, 1) =

1

2
(−x2 + x4) ,

∂y

∂ξ
(1, 1) =

1

2
(−y3 + y4) ,

∂y

∂η
(1, 1) =

1

2
(−y2 + y4) .

Using the fact that (x2, y2) , (x3, y3) , (x4, y4) are collinear, we put x4 in terms of the

other two points yielding

x4 =

(
y4 − y3 + x3

(
y3 − y2

x3 − x2

))(
x3 − x2

y3 − y2

)
. (E.8)

Computing the determinant of the Jacobian (E.2) and simplifying using (E.8) yields

|Je| = 1

4

(
(−x3 + x4) (−y2 + y4)− (−y3 + y4) (−x2 + x4)

)
= 0 (E.9)

This degenerate quadrilateral will have infinite metric terms. Even if the quadrilateral el-

ement does not completely degenerate into a triangle, but has a large angle – the metric
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terms will be very large in comparison to other element metric terms and will have a desta-

bilizing effect. Therefore, all meshes in this analysis were generated with internal angles

less than 135◦ choosing to add additional elements (and degrees of freedom) to ensure that

this happens.
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APPENDIX F. NON-DIMENSIONALIZATION OF THE KGE

Consider the KGE

(∂t + U∂x + V ∂y)
2 h− c2

0∇2h+ f 2h = 0

that we wish to study in a non-dimensional context. For simplicity in derivation, we assume

that there is no advection (U = V = 0), yielding:

∂2h

∂t2
− c2

0∇2h+ f 2h = 0.

Now, as outlined in [51], we examine typical scales of motion in the ocean so as to recast

the problem in a dimensionless way (can substitute typical scales for atmosphere or other

medium as well with the same process that follows). For this analysis, the length scales

were chosen O(100 km), vertical depth scales O(100 m), scales for h O(1 m) and the

dispersion parameter f for Coriolis O (10−4s−1). Given these choices, we know from the

discussion in Chapter II that

c2
0 = ghB =

(
10

m
s2

)
(100m) = 1000

m2

s2

that makes our specific problem:

∂2h

∂t2
− 1000

m2

s2
∇2h+

10−8

s2
h = 0.

Now, we follow the details as outlined in [68] to scale out any dimensions. In particular,

we define the following:

x̄ =
x

105

m
m

ȳ =
y

105

m
m

h̄ =
h

1

m
m
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where the typical length scale is 100 km (105 m). Now, we note via the chain rule that:

∂h

∂x
=
∂h

∂x̄

dx̄

dx
=
∂h

∂x̄

1

105m
∂2h

∂x2
=

∂

∂x

(
∂h

∂x

)
=

1

105m
∂

∂x

(
∂h

∂x̄

)
=

1

105m
∂

∂x̄

(
∂h

∂x

)
=

1

1010m2

∂2h

∂x̄2

similarly,
∂2h

∂y2
=

1

1010m2

∂2h

∂ȳ2
.

Using this information in (F) yields:

∂2h

∂t2
− 1000m2

s2

[
1

1010m2

(
∇2h

)]
+

10−8

s2
h = 0

=⇒∂2h

∂t2
− 1

107s2
∇2h+

10−8

s2
h = 0

=⇒107 s2∂
2h

∂t2
−∇2h+ 0.1h = 0

Now, we remove the dimensions from our variable h to get

107 s2∂
2h̄

∂t2
−∇2h̄+ 0.1h̄ = 0.

Letting t̄ = t
103.5 s and noting via a similar argument as above that

∂2h̄

∂t2
=

1

107 s2

∂2h̄

∂t̄2

we arrive at our final, non-dimensional form of the Klein-Gordon Equation,

∂2h̄

∂t̄2
−∇2h̄+ 0.1h̄ = 0

where t = (103.5 s) t̄, h = (1 m) h̄, x = (105 m) x̄ and y = (105 m) ȳ.
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APPENDIX G. AUXILIARY VARIABLE FORMULATIONS FOR
WESTERN, NORTHERN AND SOUTHERN BOUNDARIES

For configurations studied in this dissertation, G-N auxiliary variable formulations

are required for boundaries other than ΓE , explicitly derived in Chapter III. What follows

here are the details of the formulation for each of the other boundaries.

A. FORMULATION FOR THE WESTERN BOUNDARY

We begin by stating the Higdon boundary condition for ΓW given by:

HJ :

[
J∏
j=1

(
∂x −

1

Cj
∂t

)]
h = 0 on ΓW . (G.1)

When imposed as a boundary condition on ΓW , we can recast this formulation in terms of

auxiliary variables as outlined in Chapter III equivalent to the single boundary condition

(G.1) as:

(
∂x −

1

Cj
∂t

)
φj−1 = φj j = 1, . . . , J (G.2)

where: φ0 ≡ h φJ ≡ 0

This set of conditions involves only first-order derivatives. However, due to the appear-

ance of the x-derivative in (G.2), one cannot discretize the φj on the boundary ΓW alone.

Therefore, we shall manipulate (G.2) in order to get rid of the x-derivative.

The function h satisfies the dispersive, advective wave equation (II.29) in D. Since

the function φ1 is obtained by applying the linear (constant coefficient) operator
(
∂x − 1

C1
∂t

)
to h, it is clear that φ1 should also satisfy the same equation in D. Further, since φj is ob-

tained by applying the same linear operator j−1 times to φ1, the functions φj should satisfy
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an equation like (II.29), namely,

(
∂tt +

(
U2 − c2

0

)
∂xx +

(
V 2 − c2

0

)
∂yy+

2U∂xt + 2V ∂yt + 2UV ∂xy + f 2
)
φj = 0 (G.3)

Using the following identities:

∂xxφj =

(
∂x +

1

Cj+1

∂t

)(
∂x −

1

Cj+1

∂t

)
φj +

1

C2
j+1

φ̈j

∂xtφj = ∂t (∂xφj)

∂xyφj = ∂y (∂xφj)

and combining with (G.2) allows us to write (G.3) as:

(
−2U

Cj
− 1− U2 − c2

0

C2
j

)
φ̈j−1 −

(
2UV

Cj
+ 2V

)
φ̇′j−1 −

(
V 2 − c2

0

)
φ′′j−1−((

U2 − c2
0

)( 1

Cj
+

1

Cj+1

)
+ 2U

)
φ̇j − 2UV φ′j − f 2φj−1 =

(
U2 − c2

0

)
φj+1

for j = 1, . . . , J − 1 (G.4)

In (G.4) and elsewhere, a prime indicates differentiation with respect to y along ΓW , i.e.,

the tangential derivative along ΓW . As desired, the new boundary condition (G.4) does not

involve x-derivatives. In addition, there are no high-y or t derivatives beyond second order.

The new formulation of the J th-order NRBC on ΓW can be summarized as follows:

β0ḣ+ ∂xh = φ1 ,

αjφ̈j−1 + κjφ̇
′
j−1 − λyφ′′j−1 + βjφ̇j − γφ′j − f 2φj−1 = λxφj+1 (G.5)

φ0 ≡ h φJ ≡ 0
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where

β0 = − 1

C1

, αj = −2U

Cj
− 1− U2 − c2

0

C2
j

, κj = −2UV

Cj
− 2V, λy = V 2 − c2

0,

βj = −
(
U2 − c2

0

)( 1

Cj

1

Cj+1

)
− 2U, γ = 2UV, λx = U2 − c2

0

B. FORMULATION FOR THE NORTHERN BOUNDARY

The Higdon boundary condition for ΓN is given by:

HJ :

[
J∏
j=1

(
∂y +

1

Cj
∂t

)]
h = 0 on ΓN . (G.6)

When imposed as a boundary condition on ΓN , we can recast this formulation in terms of

auxiliary variables as outlined in Chapter III equivalent to the single boundary condition

(G.6) as:

(
∂y +

1

Cj
∂t

)
φj−1 = φj j = 1, . . . , J (G.7)

where: φ0 ≡ h φJ ≡ 0

This set of conditions involves only first-order derivatives. However, due to the appear-

ance of the y-derivative in (G.7), one cannot discretize the φj on the boundary ΓN alone.

Therefore we shall manipulate (G.7) in order to get rid of the y-derivative.

The function h satisfies the dispersive, advective wave equation (II.29) in D. Since

the function φ1 is obtained by applying the linear (constant coefficient) operator
(
∂y + 1

C1
∂t

)
to h, it is clear that φ1 should also satisfy the same equation in D. Further, since φj is ob-

tained by applying the same linear operator j−1 times to φ1, the functions φj should satisfy
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an equation like (G.3). Using the following identities:

∂yyφj =

(
∂y −

1

Cj+1

∂t

)(
∂y +

1

Cj+1

∂t

)
φj +

1

C2
j+1

φ̈j

∂ytφj = ∂t (∂yφj)

∂xyφj = ∂x (∂yφj)

and combining with (G.3) and (G.7) allows us to formulate the boundary as:

(
2V

Cj
− 1− V 2 − c2

0

C2
j

)
φ̈j−1 +

(
2UV

Cj
− 2U

)
φ̇′j−1 −

(
U2 − c2

0

)
φ′′j−1+((

V 2 − c2
0

)( 1

Cj
+

1

Cj+1

)
− 2V

)
φ̇j − 2UV φ′j − f 2φj−1 =

(
V 2 − c2

0

)
φj+1

for j = 1, . . . , J − 1 (G.8)

In (G.8) and elsewhere, a prime indicates differentiation with respect to x along ΓN , i.e.,

the tangential derivative along ΓN . As desired, the new boundary condition (G.8) does not

involve y-derivatives. In addition, there are no high-x or t derivatives beyond second order.

The new formulation of the J th-order NRBC on ΓN can be summarized as follows:

β0ḣ+ ∂yh = φ1 ,

αjφ̈j−1 + κjφ̇
′
j−1 − λxφ′′j−1 + βjφ̇j − γφ′j − f 2φj−1 = λyφj+1 (G.9)

φ0 ≡ h φJ ≡ 0

where

β0 =
1

C1

, αj =
2V

Cj
− 1− V 2 − c2

0

C2
j

, κj =
2UV

Cj
− 2U, λy = V 2 − c2

0,

βj =
(
V 2 − c2

0

)( 1

Cj
+

1

Cj+1

)
− 2V, γ = 2UV, λx = U2 − c2

0
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C. FORMULATION FOR THE SOUTHERN BOUNDARY

The Higdon boundary condition for ΓS is given by:

HJ :

[
J∏
j=1

(
∂y −

1

Cj
∂t

)]
h = 0 on ΓS. (G.10)

When imposed as a boundary condition on ΓS , we can recast this formulation in terms of

auxiliary variables as outlined in Chapter III equivalent to the single boundary condition

(G.10) as:

(
∂y −

1

Cj
∂t

)
φj−1 = φj j = 1, . . . , J (G.11)

where: φ0 ≡ h φJ ≡ 0

This set of conditions involves only first-order derivatives. However, due to the appear-

ance of the y-derivative in (G.11), one cannot discretize the φj on the boundary ΓS alone.

Therefore we shall manipulate (G.11) in order to get rid of the y-derivative.

The function h satisfies the dispersive, advective wave equation (II.29) in D. Since

the function φ1 is obtained by applying the linear (constant coefficient) operator
(
∂y − 1

C1
∂t

)
to h, it is clear that φ1 should also satisfy the same equation in D. Further, since φj is ob-

tained by applying the same linear operator j−1 times to φ1, the functions φj should satisfy

an equation like (G.3). Using the following identities:

∂yyφj =

(
∂y +

1

Cj+1

∂t

)(
∂y −

1

Cj+1

∂t

)
φj +

1

C2
j+1

φ̈j

∂ytφj = ∂t (∂yφj)

∂xyφj = ∂x (∂yφj)
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and combining with (G.3) and (G.11) allows us to formulate the boundary as:

(
−2V

Cj
− 1− V 2 − c2

0

C2
j

)
φ̈j−1 −

(
2UV

Cj
+ 2U

)
φ̇′j−1 −

(
U2 − c2

0

)
φ′′j−1−((

V 2 − c2
0

)( 1

Cj
+

1

Cj+1

)
+ 2V

)
φ̇j − 2UV φ′j − f 2φj−1 =

(
V 2 − c2

0

)
φj+1

for j = 1, . . . , J − 1 (G.12)

In (G.12) and elsewhere, a prime indicates differentiation with respect to x along ΓS , i.e.,

the tangential derivative along ΓS . As desired, the new boundary condition (G.12) does not

involve y-derivatives. In addition, there are no high-x or t derivatives beyond second order.

The new formulation of the J th-order NRBC on ΓS can be summarized as follows:

β0ḣ− ∂yh = φ1 ,

αjφ̈j−1 + κjφ̇
′
j−1 − λxφ′′j−1 + βjφ̇j − γφ′j − f 2φj−1 = λyφj+1 (G.13)

φ0 ≡ h φJ ≡ 0

where

β0 = − 1

C1

, αj = −2V

Cj
− 1− V 2 − c2

0

C2
j

, κj = −2UV

Cj
− 2U, λy = V 2 − c2

0,

βj = −
(
V 2 − c2

0

)( 1

Cj
+

1

Cj+1

)
− 2V, γ = 2UV, λx = U2 − c2

0
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APPENDIX H. OPEN PLANE DOMAIN ROTATION IN THE
DIRECTION OF ADVECTION

Here, we consider the effects of diagonal advection and how our formulation may

be simplified. Suppose we have an open plane domain where NRBCs are specified on

all four cardinal boundaries. The question arises – since we are dealing with an infinite

domain, can the problem be simplified by a change in coordinates? If so, how would this

adjust the problem, and would it make the problem any easier?

To examine this question, recall our PDE in its standard x− y plane:

(∂t + U∂x + V ∂y)
2 h− c2

0∇2h+ f 2h = 0 (H.1)

Further, suppose that the advection velocities U and V are non-zero in both directions

resulting in activation of all components of (H.1). To fix some ideas, let U > 0 and V > 0.

The goal is to convert (H.1) in its current coordinate system to one that is in the direction

of the advection velocity. To see this, consider Figure 35.

y

x
U

V

Figure 35: Generation of a new coordinate system in the direction of advection
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The new coordinate system (ξ, η) places the the ξ axis in the direction of advection.

This transformation is a simple rotation that can be described by:

x = cos(θ)ξ − sin(θ)η

y = sin(θ)ξ + cos(θ)η

or:

ξ = cos(θ)x+ sin(θ)y

η = − sin(θ)x+ cos(θ)y

Clearly U and V are also related by the geometry of the problem.

sin(θ) =
V√

U2 + V 2

cos(θ) =
U√

U2 + V 2

(H.2)

We note now that we can express h in terms of the new coordinate system as h(x, y, t) =

h
(
ξ(x, y), η(x, y), t

)
. Since (H.1) is developed in the (x, y) system, we use the chain rule

to expand (H.1) in terms of (ξ, η). We adopt the shorthand convention

ha =
∂h

∂a
hab =

∂2h

∂a∂b
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to yield the following expansions

hx = hξξx + hηηx

hy = hξξy + hηηy

hxy = hξξξxξy + hξη (ξxηy + ξyηx) + hηηηxηy + hξξxy + hηηxy (H.3)

hxx = hξξξ
2
x + 2hξηξxηx + hηηη

2
x + hξξxx + hηηxx

hyy = hξξξ
2
y + 2hξηξyηy + hηηη

2
y + hξξyy + hηηyy.

Since the coordinate transformation is linear, the problem is simplified even more

as the second order metric terms vanish.

ξx = cos θ ηx = − sin θ ξy = sin θ ηy = cos(θ)

ξxx = ξyy = ξxy = ηxx = ηyy = ηxy = 0
(H.4)

Now, looking term by term at (H.1), in light of (H.3), we consolidate terms to see

the result of the transformation.

ḧ+ Ahξξ + Bhηη + Chξt + Dhηt + Ehξη + f 2h = 0 (H.5)

where h = h(ξ, η, t) and:

A =
(
U2 − c2

0

)
ξ2
x +

(
V 2 − c2

0

)
ξ2
y + 2UV ξxξy

B =
(
U2 − c2

0

)
η2
x +

(
V 2 − c2

0

)
η2
y + 2UV ηxηy

C = 2 (Uξx + V ξy) (H.6)

D = 2 (Uηx + V ηy)

E =
(
U2 − c2

0

)
2ξxηx +

(
V 2 − c2

0

)
2ξyηy + 2UV (ξxηy + ξyηx)

We continue by using the information provided by the geometry of the transforma-

tion in (H.2) and the metric terms found in (H.4). Specifically, if we define the adjusted
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advection velocities Ū and V̄ corresponding to the ξ and η directions respectively as:

Ū = Uξx + V ξy

V̄ = Uηx + V ηy

then each of the terms in (H.6) simplify to:

A = Ū2 − C2
0

B = V̄ 2 − C2
0

C = 2Ū (H.7)

D = 2V̄

E = 2Ū V̄ − 2c2
0 (2ξxηx + ξyηy)︸ ︷︷ ︸

=0

Of course, if one examines V̄ we find:

V̄ = Uηx + V ηy = −U sin(θ) + V cos(θ) = −U V√
U2 + V 2

+ V
U√

U2 + V 2
= 0 (H.8)

This significantly simplifies the problem to:

htt +
(
Ū2 − C2

0

)
hξξ − c2

0hηη + 2Ūhξt + f 2h = 0 (H.9)

This procedure shows that for the open plane domain, any constant advection ve-

locity not in a cardinal direction in the standard x−y coordinate system can be converted to

an equivalent problem where the advection velocity is in a cardinal direction in an alternate

ξ − η coordinate system. The result is that when examining the open plane domain, one

only needs to examine advections in one cardinal direction since a problem with diagonal

advection could be recast into a cardinal direction advection problem in another coordinate

system.
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APPENDIX I. ARBITRARILY SHAPED BOUNDARY
FORMULATION

Recall the KGE

(∂t + U∂x + V ∂y)
2 h− c2

0∇2h+ f 2h = 0 (I.1)

for which we wish to formulate the G-N auxiliary variable formulation for an arbitrarily

shaped boundary. The Higdon boundary condition of order J is given by

HJ :

[
J∏
j=1

(
∂n +

1

Cj
∂t

)]
h = 0 on Γ (I.2)

Now, we introduce the auxiliary functions φ1, . . . , φJ−1, which are defined on Γ as well as

in the exterior domain D (see Figure 29). Eventually, we shall use these functions only on

Γ, but the derivation requires that they be defined inD as well, or at least in a non-vanishing

region adjacent to Γ. The functions φj are defined via the relations

(
∂n +

1

C1

∂t

)
h = φ1 , (I.3)(

∂n +
1

C2

∂t

)
φ1 = φ2 , (I.4)

...(
∂n +

1

CJ
∂t

)
φJ−1 = 0 . (I.5)

By definition, these relations hold in D, and also on Γ. It is easy to see that (I.3 - I.5), when

imposed as boundary conditions on Γ, are equivalent to the single boundary condition (I.2).

If we also define

φ0 ≡ h φJ ≡ 0 , (I.6)
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then we can write (I.3 - I.5) concisely as

(
∂n +

1

Cj
∂t

)
φj−1 = φj j = 1, . . . , J . (I.7)

This set of conditions involves only first-order derivatives. However, due to the appearance

of the normal derivative in (I.7), one cannot discretize the φj on the boundary Γ alone.

Therefore, we shall manipulate (I.7) in order to get rid of the normal derivative ∂n =

nx∂x + ny∂y where nx = nx(x, y) and ny = ny(x, y).

The function h satisfies the KGE inD. Since the function φ1 is obtained by applying

the linear operator
(
∂n + 1

C1
∂t

)
to h, we must consider what equation that φ1 satisfies. We

begin by applying this operator to the KGE to yield

(
∂n +

1

C1

∂t

)(
ḧ+ λx∂xxh+ λy∂yyh+ 2U∂xth+ 2V ∂yth+ 2UV ∂xyh+ f 2h

)
= 0

nx
(
∂xtth+ λx∂xxxh+ λy∂xyyh+ 2U∂xxth+ 2V ∂xyth+ λx∂xxyh+ f 2∂xh

)
ny
(
∂ytth+ λx∂xxyh+ λy∂yyyh+ 2U∂xyth+ 2V ∂yyth+ λx∂xyyh+ f 2∂yh

)
(I.8)

1

C1

(
∂ttth+ λx∂xxth+ λy∂yyth+ 2U∂xtth+ 2V ∂ytth+ λx∂xyth+ f 2∂th

)
= 0

Now, consider the first order derivatives for the φ1 boundary condition

∂xφ1 =
∂

∂x
(nx) ∂xu+ nx∂xxh+

∂

∂x
(ny) ∂yu+ ny∂xyh+

1

C1

∂xth

∂yφ1 =
∂

∂y
(nx) ∂xu+ nx∂xyh+

∂

∂y
(ny) ∂yu+ ny∂yyh+

1

C1

∂yth

∂tφ1 =
∂

∂t
(nx) ∂xu+ nx∂xth+

∂

∂t
(ny) ∂yu+ ny∂yth+

1

C1

∂tth

Since the components of the normal vector are themselves functions of x and y, we incur

additional terms for the derivatives of those components. If the boundary is fixed in time,

clearly the time derivatives of the normal components will vanish, however, the spatial

derivatives will not. We now consider a simplifying assumption that the curvature on the

boundary is negligible. In other words, the spatial rate of change of the components of the
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normal vector are very small in comparison to the other terms. This allows us to neglect

the following terms:

∂

∂x
(nx) =

∂

∂x
(ny) =

∂

∂y
(nx) =

∂

∂y
(ny) = 0.

Using this assumption, the second order derivatives of φ1 are

∂xxφ1 = nx∂xxxh+ ny∂xxyh+
1

C1

∂xxth

∂xyφ1 = nx∂xxyh+ ny∂xyyh+
1

C1

∂xyth

∂yyφ1 = nx∂xyyh+ ny∂yyyh+
1

C1

∂yyth

∂ttφ1 = nx∂xtth+ ny∂ytth+
1

C1

∂ttth

∂xtφ1 = nx∂xxth+ ny∂xyth+
1

C1

∂xtth

∂ytφ1 = nx∂xyth+ ny∂yyth+
1

C1

∂ytth

(I.9)

We can now use (I.9) in (I.8) to find that φ1 should also satisfy the KGE in D. Further,

since φj is obtained by applying the same operator to φj−1, the functions φj should satisfy

a similar equation, namely,

[
∂tt +

(
U2 − c2

0

)
∂xx +

(
V 2 − C2

0

)
∂yy + 2U∂xt + 2V ∂yt + 2UV ∂xy + f 2

]
φj = 0 (I.10)

We now note that the boundary condition and the PDE that φj satisfies are described

in two different coordinate systems – namely (n, τ ) and (x, y) respectively. Consider an

arbitrary part of the boundary (Γ) shown in Figure 30. Of course, in the most general

case, the normal and tangential vectors are dependent on the position on the boundary, but

can be computed given a particular domain. Since these components then are “known,”

we consider a change of coordinates from x and y to n and τ as defined by the linear

transformation and its associated differentiation operator (VII.2). Rewriting each operator
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in (I.10) and again using the small curvature assumption yields:

∂tt = ∂tt

∂xx = n2
x∂nn − 2nxny∂nτ + n2

y∂
2
ττ

∂yy = n2
y∂nn + 2nxny∂nτ + n2

x∂
2
ττ

∂xt = nx∂nt − ny∂τt

∂yt = ny∂nt + nx∂τt

∂xy = nxny∂nn +
(
n2
x − n2

y

)
∂2
nτ − nxny∂2

ττ .

Substituting these terms back into (I.10) and organizing this simplifies to:

[
∂tt + A∂nn + B∂ττ + C∂2

nτ + 2 D∂nt + 2 E∂τt + f 2
]
φj = 0 (I.11)

where:

A =
(
U2 − c2

0

)
n2
x +

(
V 2 − C2

0

)
n2
y + 2UV nxny

B =
(
U2 − c2

0

)
n2
y +

(
V 2 − C2

0

)
n2
x − 2UV nxny

C = 2
(
−U2 + V 2

)
nxny + 2UV

(
n2
x − n2

y

)
D = Unx + V ny

E = −Uny + V nx

We now see that this formulation is expressed in terms of the normal and tangential coordi-

nate system and further has the same form as (III.17). We can proceed in the same manner

as outlined in Chapter III to eliminate the normal derivatives to yield the new formulation
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of the J th-order NRBC on Γ summarized as follows:

β0η̇ +
∂η

∂n
= φ1 , (I.12)

αjφ̈j−1 + γjφ̇
′
j−1 −B φ′′j−1 + βjφ̇j −C φ′j − f 2φj−1 = A φj+1 (I.13)

β0 =
1

C1

, αj =
2 D

Cj
− 1− A

C2
j

,

γj =
C

Cj
− 2 E, βj = A

(
1

Cj
+

1

Cj+1

)
− 2 D

φ0 ≡ η φJ ≡ 0. (I.14)

Here, prime indicates tangential differentiation along Γ. As desired, the new boundary

condition does not involve any normal derivatives and there are no high tangential or time

derivatives beyond second order.

There are a few remaining concerns. First, we must be able to compute the normal

and tangential components of the vectors mandated by the mapping (VII.2). Addition-

ally, we have several terms which require the integration of tangential derivatives along a

general boundary. The question arises, how do we evaluate these terms along a particular

boundary? Finally, we must still relate this boundary formulation back into the interior

formulation and consider the appropriate values for the Cj terms.

A. COMPUTING THE NORMAL AND TANGENTIAL VECTOR COMPONENTS

Consider (VII.2), which gives us a way to write the normal and tangential deriva-

tives in terms of the standard x − y coordinates. We can extend this via the chain rule to

map each of these components in terms of our canonical ξ − η coordinates. Before we do

any of this, however, we must first be able to compute the normal vectors at each point

on the boundary. To see this, consider the normal and tangential vectors of a canonical

element as shown in Figure 36.
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1n
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4n

1t


4t


h

x

Figure 36: Normal and tangential vectors along a canonical element boundary.

After introducing the nonsingular mapping ξ = ξ(x, y) and η = η(x, y), these

normal vectors [47] are given by:

~n = η
∇η
|∇η|

∣∣∣
η=±1

, ~n = ξ
∇ξ
|∇ξ|

∣∣∣
ξ=±1

.

Each of these normal vectors can then be used to compute the tangential vectors by

taking the cross product of the normal vectors with the unit vector (0, 0,−1)T . In the case

of Figure 36, the normalized tangential vectors are:

~τ1 =
1√

∂η
∂y

2
+ ∂η

∂x

2

 +∂η
∂y

−∂η
∂x

 , ~τ2 =
1√

∂ξ
∂y

2
+ ∂ξ

∂x

2

 − ∂ξ
∂y

+ ∂ξ
∂x

 ,

~τ3 =
1√

∂η
∂y

2
+ ∂η

∂x

2

 −∂η
∂y

+∂η
∂x

 , ~τ4 =
1√

∂ξ
∂y

2
+ ∂ξ

∂x

2

 + ∂ξ
∂y

− ∂ξ
∂x

 .

When put in terms of (IV.8), the unit tangential vectors are:

~τ1 =
1

|Js|

 +∂x
∂ξ

+∂y
∂ξ

 , ~τ2 =
1

|Js|

 +∂x
∂η

+∂y
∂η

 ,

~τ3 =
1

|Js|

 −∂x
∂ξ

−∂y
∂ξ

 , ~τ4 =
1

|Js|

 −∂x
∂η

−∂y
∂η

 .

(I.15)
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where:

|Js| =


√(

∂x
∂ξ

)2

+
(
∂y
∂ξ

2
)

η = ±1√(
∂x
∂η

)2

+
(
∂y
∂η

2
)

ξ = ±1.

We now have a way to compute the normal and tangential components required for this

formulation.

B. INTEGRATION OF TANGENTIAL DERIVATIVES

In (I.13), we have several terms that will require the integration of first and second

order tangential derivatives along a general boundary (after weak integral formulation).

The question arises, how do we evaluate these terms along a particular boundary?

1. Integration of First Order Tangential Derivatives

To examine this arbitrary domain formulation in greater detail, consider a single

element where we evaluate an integral that contains a first order tangential derivative along

a single canonical side.

∫
Γs

ψi
∂φ(x, y)

∂τ
dΓs, ∂τ = ~τ · ∇

=

∫
Γs

ψi~τ · ∇φ(x, y) dΓs

=

∫
Γs

ψi

(
τx
∂φ

∂x
+ τy

∂φ

∂y

)
dΓs

=

Q∑
q=1

wq|Jsq |ψ
q
i

(
τ qx
∂φq

∂x
+ τ qy

∂φq

∂y

)
Q = number of quadrature points on a side

Here, |Jsq | is the Jacobian of the transformation along the side (side length) and wq is the

quadrature weight for Lobatto integration. If we use collocated quadrature, the cardinality

property of the basis functions ensures that only the ith basis function is nonzero (in fact

unity) at quadrature point i. This rids us of the summation over all quadrature points for
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basis function i yielding:

∫
Γs

ψi
∂φ(x, y)

∂τ
dΓs = wi|Jsi |

(
τ ix
∂φi

∂x
+ τ iy

∂φi

∂y

)

Now, expand our variable φ in terms of our canonical coordinates (ξ, η) and perform basis

function expansions using our 2-D basis functions (MN = (N + 1)2).

=wi|Jsi |

(
τ ix

MN∑
j=1

∂ψij
∂x

φj + τ iy

MN∑
j=1

∂ψij
∂y

φj

)

=wi|Jsi |

(
τ ix

MN∑
j=1

(
∂ψij
∂ξ

∂ξi

∂x
+
∂ψij
∂η

∂ηi

∂x

)
φj + τ iy

MN∑
j=1

(
∂ψij
∂ξ

∂ξi

∂y
+
∂ψij
∂η

∂ηi

∂y

)
φj

)

Of course our boundary integral implies that we are integrating strictly on a side. For

definiteness in the example, consider side 2 where ξ = +1, η ∈ [−1,+1]. Now, we expand

using (IV.8) and (I.15):

=wi|Jsi |

(
1

|Jsi |
∂xi

∂η

MN∑
j=1

(
∂ψij
∂ξ

(
1

|Jei |
∂yi

∂η

)
+
∂ψij
∂η

(
− 1

|Jei |
∂yi

∂ξ

)))
φj

+wi|Jsi |

(
1

|Jsi |
∂yi

∂η

MN∑
j=1

(
∂ψij
∂ξ

(
− 1

|Jei |
∂xi

∂η

)
+
∂ψij
∂η

(
1

|Jei |
∂xi

∂ξ

)))
φj

Simplifying and using the definition of the element Jacobian (IV.7), our task now requires

evaluating:

=wi

(
1

|Jei |

(
−∂x

i

∂η

∂yi

∂ξ
+
∂yi

∂η

∂xi

∂ξ

) MN∑
j=1

∂ψij
∂η

φj

)
= wi

MN∑
j=1

∂ψij
∂η

φj

Now, consider the term
∂ψi

j

∂η
, which means “the partial derivative with respect to η

of the jth basis function evaluated at the ith quadrature point”. We note that the 2-D basis

functions ψj are formed using tensor products of 1-D basis functions νk(ξ) and νl(η) such

that j = 1, . . . ,MN where the mapping from 1-D to 2-D is j = {(k − 1)(N + 1) + l :
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k, l = 1, . . . N + 1}. Therefore:

∂ψj
∂η

(+1, ηi) =νk(+1)
dνl
dη

(ηi)

Using this and the cardinality property of the basis functions, we can evaluate the integral

of the first order tangential derivative as:

∫
Γs

ψi
∂φ(x, y)

∂τ
dΓs = wi

N+1∑
j=1

dνij
dη

φj

A similar argument holds for other canonical sides being evaluated on the boundaries.

2. Integration of Second Order Tangential Derivatives

Recall, the second order term from the auxiliary formulation of the form:

∫
Γs

ψi
∂2φ

∂τ 2
dΓs =

∫
Γs

∂

∂τ

(
ψi
∂φ

∂τ

)
dΓs −

∫
Γs

∂ψi
∂τ

∂φ

∂τ
dΓs

= ψi
∂φ

∂τ

∣∣∣end

start︸ ︷︷ ︸
=0 if closed boundary

−
∫

Γs

∂ψi
∂τ

∂φ

∂τ
dΓs.

Now, suppose that we expand each term, as in the previous section.

∫
Γs

∂ψi
∂τ

∂φ

∂τ
dΓs =

∫
Γs

(
τx
∂ψi
∂x

+ τy
∂ψi
∂y

)(
τx
∂φ

∂x
+ τy

∂φ

∂y

)
dΓs

=

Q∑
q=1

wq|Jsq |
(
τ qx
∂ψqi
∂x

+ τ qy
∂ψqi
∂y

)
︸ ︷︷ ︸

1©

(
τ qx
∂φq

∂x
+ τy

∂φq

∂y

)
︸ ︷︷ ︸

2©
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Consider 1© evaluated on side 2.

τ qx
∂ψqi
∂x

+ τ qy
∂ψqi
∂y

= τ qx

(
∂ψqi
∂ξ

∂ξq

∂x
+
∂ψqi
∂η

∂ηq

∂x

)
+ τ qy

(
∂ψqi
∂ξ

∂ξq

∂y
+
∂ψqi
∂η

∂ηq

∂y

)
=

1

|Jsq |
∂x

∂η

(
∂ψqi
∂ξ

(
1

|Jeq |
∂y

∂η

)
+
∂ψqi
∂η

(
− 1

|Jeq |
∂y

∂ξ

))
+

1

|Jsq |
∂y

∂η

(
∂ψqi
∂ξ

(
− 1

|Jeq |
∂x

∂η

)
+
∂ψqi
∂η

(
1

|Jeq |
∂x

∂ξ

))
=

1

|Jsq ||Jeq |

(
−∂x
∂η

∂y

∂ξ
+
∂y

∂η

∂x

∂ξ

)
∂ψqi
∂η

=
1

|Jsq |
∂ψqi
∂η

Now, combining this result with the expansion of 2© as found in Appendix I.B, we find:

∫
Γs

∂ψi
∂τ

∂φ

∂τ
dΓs =

Q∑
q=1

wq
1

|Jsq |
∂ψqi
∂η

MN∑
j=1

∂ψqj
∂η

φj

=

Q∑
q=1

wq
1

|Jsq |
dνqi
dη

N+1∑
j=1

dνqj
dη

φj

As in Appendix I.B, similar results can be obtained for each of the other canonical sides.

C. RELATING THE BOUNDARY AND INTERIOR FORMULATIONS

The final four terms of (IV.3) are all boundary integrals where the NRBC must be

applied. To simplify our discussion, we note that these integrals only apply to h on Γ, thus

we will denote these terms as ĥ. Much like the auxiliary variable formulation, we note that

the NRBC is defined in terms of normal derivatives (∂n) while the boundary terms of (IV.3)

are defined in terms of standard Cartesian derivatives (∂x and ∂y). Again, we consider a

linear transformation of the final four terms as defined in (VII.2). This yields, for the first

boundary term:

λx

∫
Γ

Ψi
∂h

∂x
nx dΓ = λx

∫
Γ

Ψi
∂ĥ

∂x
nx dΓ = λx

∫
Γ

Ψi

(
nx
∂ĥ

∂n
− ny

∂ĥ

∂τ

)
nx dΓ (I.16)

142



Now, we can directly use (I.3) to join the two formulations:

λx

∫
Γ

Ψi

(
nx
∂ĥ

∂n
− ny

∂η̂

∂τ

)
nx dΓ = λx

∫
Γ

Ψi

(
nx

(
φ1 − β0

˙̂
h
)
− ny

∂ĥ

∂τ

)
nx dΓ (I.17)

Now, we note that the boundary integral can be discretized on the boundary alone – in

terms of tangential derivatives, time derivatives, and the auxiliary variable φ1. Performing

these substitutions in each boundary term of (IV.3), we get the revised weak form of the

problem:

∫
Ω

Ψiḧ dΩ− λx
∫

Ω

∂Ψi

∂x

∂h

∂x
dΩ− λy

∫
Ω

∂Ψi

∂y

∂h

∂y
dΩ

−UV
∫

Ω

∂Ψi

∂y

∂h

∂x
dΩ− UV

∫
Ω

∂Ψi

∂x

∂h

∂y
dΩ

+2U

∫
Ω

Ψi
∂ḣ

∂x
dΩ + 2V

∫
Ω

Ψi
∂ḣ

∂y
dΩ + f 2

∫
Ω

Ψih dΩ

+λx

∫
Γ

Ψiφ1n
2
x dΓ− λx

∫
Γ

Ψi
˙̂
h β0n

2
x dΓ− λx

∫
Γ

Ψi
∂ĥ

∂τ
nynx dΓ (I.18)

+λy

∫
Γ

Ψiφ1n
2
y dΓ− λy

∫
Γ

Ψi
˙̂
h β0n

2
y dΓ + λy

∫
Γ

Ψi
∂ĥ

∂τ
nxny dΓ

+UV

∫
Γ

Ψiφ1nxny dΓ− UV
∫

Γ

Ψi
˙̂
h β0nxny dΓ− UV

∫
Γ

Ψi
∂ĥ

∂τ
n2
y dΓ

+UV

∫
Γ

Ψiφ1nxny dΓ− UV
∫

Γ

Ψi
˙̂
h β0nxny dΓ + UV

∫
Γ

Ψi
∂η̂

∂τ
n2
x dΓ = 0,

which, as desired, evaluates boundary integrals with data derived from only the boundary.

D. SELECTION OF CJ TERMS

If we examine the auxiliary variable formulation (I.13), we see that the selection of

appropriate Cj values has yet to be addressed. As has been previously shown, any choice

of Cj is guaranteed to reduce spurious reflection as the order of the NRBC (J) increases.

Armed with this, we choose convenient values for our Cj’s that cause the second order in
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time (αj) terms to vanish for all j. In this case:

αj = 0 =
2D
Cj
− 1− A

C2
j

⇒ Cj = D±
√

D2 − A

= Unx + V ny ±
√
c2

0

(
n2
x + n2

y

)
= Unx + V ny ± c0

This implies a special value of Cj for each boundary point, independent of NRBC

order, i.e., Cj = C(x, y) for all j. Further, this implies that the other coefficients in the

auxiliary formulation are independent of NRBC order:

γj = γ =
C

C(x, y)
− 2E, βj = β =

2A
C(x, y)

− 2D.

The Higdon boundary condition, while general in nature, implicitly assumes that by the

time a wave pulse gets to the artificial boundary, it is traveling primarily as a plane wave

normal to the boundary. This choice for Cj can be thought of as a choice that accounts for

any advection and “corrects” for the geometry of the problem – i.e., non-normal impinge-

ment on the boundary.
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